STATE OF CALIFORNIA The Resources Agency Department of Water Resources BULLETIN No. 130-69 ### HYDROLOGIC DATA: 1969 Volume 1: NORTH COASTAL AREA UNIVERSITY OF CALIFORNIA DAVIS JUN 1 1971 LIBRARY JANUARY 1971 NORMAN B. LIVERMORE, JR. The Resources Agency. RONALD REAGAN Governor State of California # STATE OF CALIFORNIA The Resources Agency ### Department of Water Resources ### BULLETIN No. 130-69 ## HYDROLOGIC DATA: 1969 Volume I: NORTH COASTAL AREA Capies of this bulletin at \$3.00 each may be ardered from: State of California DOCUMENTS SECTION P.O. Bax 20191 Sacramento, California 95820 Make checks payable to STATE OF CALIFORNIA. California residents add 5 percent sales tax. JANUARY 1971 NORMAN B. LIVERMORE, JR. Secretary for Resources The Resources Agency RONALD REAGAN Governor State of California WILLIAM R. GIANELLI Director Department of Water Resources #### FOREWORD The hydrologic data programs of the Department of Water Resources supplement the data collection activities of other agencies and help satisfy needs of these agencies for data on the quality and quantity of water in the State. Bulletin No. 130-69 presents accurate, comprehensive, and timely hydrologic data which are prerequisites for effective planning, design, construction, and operation of water facilities. The Bulletin No. 130 series is published annually in five volumes. Each volume presents hydrologic data for one of five reporting areas of the State. These areas are delineated on the map on the opposite page. William R. Gianelli, Director Department of Water Resources The Resources Agency State of California November 19, 1970 #### METRIC CONVERSION TABLE | ENGLISH UNIT | EQUIVALENT METRIC UNIT | |-------------------------------|---| | Inch (in.) | 2.54 Centimeters | | Foot (ft.) | 0.3048 Meter | | Mile (mi.) | 1.609 Kilometers | | Acre | 0.405 Hectare | | Square mile (sq. mi.) | 2.590 Square kilometer | | U. S. gallon (gal.) | 3.785 Liters | | Acre-foot (acre-ft.) | 1,233.5 Cubic meters | | U. S. gallon per minute (gpm) | 0.0631 Liter per second | | Cubic feet per second (cfs) | 1.7 Cubiç meters per minute | | Part per million (ppm) | Milligram per liter (mg/l) | | Part per billion (ppb) | Microgram per liter (ug/l) | | Part per trillion (ppt) | Nanogram per liter (ng/l) | | Equivalent per million (epm) | Milliequivalent per liter (me/l) | | Degrees Fahrenheit (°F) | Degrees Celsius or Degrees Centigrade (°C) = (°F - 32°) 5/9 | #### TABLE OF CONTENTS | Pag | _{se} | |---|---------------| | AREAL COVERAGE OF VOLUMES | i | | FOREWORD | li | | METRIC CONVERSION TABLE | LV | | ORGANIZATION | li | | ABSTRACT | Li | | ACKNOWLEDGMENTS | Li | | APPENDIXES | | | APPENDIX A: CLIMATOLOGICAL DATA | 1 | | Introduction | 3 | | Figure A-1 Climatological Observation Stations | 5 | | Table A-l Index of Climatological Stations | 6 | | Table A-2 Precipitation Data | 9 | | Table A-3 Storage Gage Precipitation Data | ll | | Table A-4 Evaporation Data | 12 | | APPENDIX B: SURFACE WATER MEASUREMENTS , | 13 | | Introduction | 15 | | Figure B-1 Surface Water Measurement Stations | 17 | | Table B-1 Annual Unimpaired Runoff | 18 | | Table B-2 Monthly Unimpaired Runoff | 21 | | Table B-3 Daily Mean Discharge | 22 | | APPENDIX C: GROUND WATER MEASUREMENTS | 27 | | Introduction | 29 | | Figure C-1 Ground Water Basins, Water Level Measurements | 31 | | Table C-1 Average Change of Ground Water Levels and Summary | | | | 33 | | Table C-2 Ground Water Levels at Wells | 34 | #### TABLE OF CONTENTS (Continued) | | | | | Page | |---|---|---|---|------| | APPENDIX D: SURFACE WATER QUALITY | • | | • | 37 | | Introduction | • | • | | 39 | | Figure D-l Surface Water Sampling Stations | • | • | • | 41 | | Table D-1 Sampling Station Data and Index | • | • | | 43 | | Table D-2 Mineral Analyses of Surface Water | • | • | | 44 | | Table D-3 Trace Element Analyses of Surface Water | | • | • | 57 | | Table D-4 Miscellaneous Constituents in Surface Water | • | • | • | 58 | | APPENDIX E: GROUND WATER QUALITY | • | • | • | 63 | | Introduction | • | • | | 65 | | Figure E-1 Ground Water Basins, Water Quality Samples . | • | • | | 67 | | Table E-1 Mineral Analyses of Ground Water | | • | | 68 | | Table E-2 Trace Element Analyses of Ground Water | • | • | | 73 | # State of California The Resources Agency DEPARTMENT OF WATER RESOURCES RONALD REAGAN, Governor NORMAN B. LIVERMORE, JR., Secretary for Resources WILLIAM R. GIANELLI, Director, Department of Water Resources JOHN R. TEERINK, Deputy Director #### NORTHERN DISTRICT . . District Engineer Gordon W. Dukleth | Wayne S. Gentry | | | | • • | . (| Chie | f, (|)per | cations Sec | tion | |---------------------|----------------|----------|--------|-----|------|------|------|------|-------------|------| | Activities co | overed by this | repor | t were | und | ler | the | suj | perv | rision | | | Robert F. Middletor | ı, Jr | | | | | | | rolo | ogic Data U | nit | | | P | Assiste | d by | | | | | | | | | Linwood L. Bates - | Red Bluff Off | fice . | | . 1 | 7. I | R. E | ngir | neen | ring Associ | ate | | Walter D. McIntyre | - Sutter Fiel | ld Offi | ce . | . 1 | 7. 1 | R. E | ngir | neer | ring Associ | ate | | John M. Miller - Cl | imatological | Data | | | • | • • | W. | R. | Technician | II | | Alden B. Moore - Cl | imatological | Data | | | • | | W. | R. | Technician | II | | Charles G. Hodge - | Surface Water | . Measu | rement | s. | • | • • | W. | R. | Technician | II | | Seth K. Barrett - (| round Water N | leasure: | ments | • • | • | | W. | R. | Technician | II | | Lee R. Gibson - Wat | ter Quality . | | | | | | W. | R. | Technician | II | Reviewed and coordinated by Division of Resources Development Environmental Quality Branch Water Resources Evaluation Section #### ABSTRACT The report contains tables showing data on climate, surface water flow, ground water levels, and surface and ground water quality in the North Coastal area during the 1968-69 water year. Figures show the location of climatological stations, surface water measurement stations, surface water sampling stations, and ground water basins. #### ACKNOWLEDGMENTS In the preparation of this report, valuable assistance and contributions were received from several public agencies and many private cooperators. The cooperation of the U.S. Weather Bureau and the U.S. Geological Survey was particularly helpful and is gratefully appreciated. A special note of thanks is extended to the many loyal and dedicated weather observers whose unselfish efforts have contributed immeasurably to our knowledge of historical weather conditions in the North Coastal area. APPENDIX A CLIMATOLOGICAL DATA #### INTRODUCTION This appendix summarizes monthly precipitation, temperature, wind movement, and evaporation data for the North Coastal area from July 1, 1968, to September 30, 1969. Storage gage data are reported as annual precipitation. The appendix contains all weather data collected by cooperating agencies and local observers at 118 stations, with the exception of the observed air temperature data. The temperature data will no longer be published in this report. Daily climatologic data, including temperatures, together with local conditions and qualifying remarks, are available in the files of the Department of Water Resources. To insure accuracy, stations are normally inspected either semiannually or annually to see that the equipment is properly maintained and that observations are generally taken in accordance with U.S. Weather Bureau standards. Each station in this appendix has been assigned an identification number. The letter and first digit denote the drainage basin as shown below. The remaining digits denote the alphabetical sequence of the station. #### North Coastal Area FO - Smith River F1 - Lost River-Butte Valley F2 - Shasta-Scott Valleys F3 - Klamath River F4 - Trinity River F5 - Mad River F6 - Eel River F7 - Mattole River CLIMATOLOGICAL OBSERVATION STATIONS #### TABLE A-1 INDEX OF CLIMATOLOGICAL STATIONS An explanation of the column headings and the code symbols follows: 40-Acre Tract - This denotes the location of the station within the section in which it is located. The letter code is derived from the diagram to the right. | D | С | В | A | |---|---|---|---| | E | F | G | Н | | М | L | K | J | | N | P | ବ | R | Base and Meridian - The code for this column is as follows: H - Humboldt Base and Meridian M - Mount Diablo Base and Meridian Cooperator Number - This number is assigned from the following list: 006 Northwestern Pacific Railroad 007 California-Oregon Power Company (COPCO) 804 California Department of Parks and Recreation 808 California Division of Forestry 809 California Division of Highways 900 U. S. Weather Bureau 901 Corps of Engineers, San Francisco District 903 Corps of Engineers, Sacramento 905 U. S. Forest Service 907 State Climatologist & Unpublished (USWB) Where no number is indicated, the agency is a private cooperator with the California Department of Water Resources. Cooperator's Index Number - This is the number assigned to the station by the agency responsible for, or handling the records of, the station. The U. S. Weather Bureau number is only shown in this column when it differs from the alpha order number. County - This is a standard code for California counties; those counties used in this appendix are shown below: | County | | |-----------|----| | Del Norte | 08 | | Glenn | 11 | | Humboldt | 12 | | Lake | 17 | | Mendocino | 23 | | Modoc | 25 | | Siskiyou | 47 | | Trinity | 53 | #### INDEX OF CLIMATOLOGICAL STATIONS FOR 1968-69 NORTH COASTAL AREA | | Station | | | | Tract | JE | | | | | | code | |--|---
--|--------------------------|-------------------------|------------------------|--|--|---|--------------------------------------|--------|-------|----------------------------| | Number | Name | Elevation
(In Feet) | , E | 00 MG GR | Base & Meridi | O - II | 0 11
0 = 0
0 0 = 0
0 0 = 0
0 0
0 | Cooperato Cooperato Index | Record | Record | Years | County Co | | F60 0018
F60 0088
F50 0253
F30 0342-35
F30 0715 | ADANAC LODGE ALDERPOINT AHCATA A P S ASHLAND ORE BESWICK 7 S | 217 1 | 7 03
9 07
4 39 | S 05E
N 01E
S 01E | H H
Q H
W | 39-50-48
40-11
40-58-18
42-13
41-52 | 123-42-00
123-36
124-05-24
122-43
122-14 | 900
900 350304
900 | 1950
1940
1957
1879
1952 | | | 23
12
12
61
47 | | F40 0738
F50 0/64
F20 07d6-01
F30 0499
F50 0901 | BIG BAR RANGER STA
BIG LAGOON
BIG SPRINGS 4 E
BLUE CREEK MTN LO
BLUE LAKE | 100 1
2955 | 8 09
5 43
0 12 | N 04W | R H
R H
R H | 40-44-54
41-09-36
41-35-30
41-21-42
40-52-54 | 123-14-42
124-05-54
122-19-42
123-45-54
123-59-12 | 900
PN2125 | 1943
1947
1960
1960
1951 | | | 53
12
47
8
12 | | F70 0920
F30 0922-35
F40 0929
F60 1046
F10 1050 | BLUNTS REEF LV BUY RANGER STA ORE BOARDCAMP MTN BRANSCOMB 2 NW BRAY 10 WSW | 4356 3
4500 2
1480
5759 2 | 6 04 | N 04E
N 16W | W
H
M M | 40-20
42-24
40-42-12
39-41-12
41-34 | 124-30
121-03
123-42-00
123-39-36
122-08 | 907
900 350853
900
900 | 1947
1940
1963
1959
1951 | | | 12
61
12
23
47 | | F60 1080
F00 1107-35
F60 1181
F60 1210
F40 1215 | BRIDGEVILLE 4 NNW BROOKINGS OREGON BULL CREEK BURLINGTON ST PARK BURNT RANCH 15 | 2050 2
80
410 3
200 1
2150 2 | 5 41:
6 01:
2 02: | 5 13w
5 01E
5 02E | H
H H
D H
E H | 40-31
42-03
40-21-00
40-18-30
40-4/-48 | 123-49
124-17
124-06-30
123-54-24
123-28-48 | 900
900 351055
804
804
900 | 1954
1914
1960
1950
1945 | | | 12
61
12
12
53 | | F40 1215-01
F40 1215-15
F60 1263
F20 1316
F00 1446 | BURNT RANCH 3NW BURNT RCH HMS CAHTO PEAK CALLAHAN RANGER STA CAMP SIX LOOKOUT | 2200 1
1500 1
4230
3136 2
3700 3 | 4 05 | V 06E | H
F H
M
8 H | 40-47-30
40-48-30
39-42
41-18
41-47-48 | 123-30-12
123-28-30
123-36
122-48
123-52-24 | 903
900
900 | 1945
1963
1953
1943
1963 | | | 53
53
23
47
8 | | F30 1606
F30 1726
F30 1799
F40 1886
F30 1990 | CECILVILLE 5 SE CHILOQUIN OREGON CLEAR CREEK COFFEE CREEK RS COPCO DAM NO 1 | * | 7 15 | N 07E | H H H P M | 41-00
42-35
41-42-30
41-05
41-59 | 123-03
121-52
123-26-54
122-42
122-20 | 900
900
900
900
900 | 1954
1884
1959
1960
1928 | | | 47
61
47
53 | | F60 2081
F60 2084
F00 2146
F00 2147
F00 2148 | COVELO COVELO EEL RIVER HS CRESCENT CITY 5 NNE CRESCENT CITY 1 N CRESCENT CITY 7 ENE | | 8 23
5 17
0 16 | N 01W | Н
М
Н
Н | 39-4/
39-50
41-49-00
41-46
41-48 | 123-15
123-05
124-09-18
124-12
124-05 | 900
900
901
900
900 | 1921
1940
1949
1885
1913 | | | 23
23
8
8 | | F00 2150
F00 2152
F10 2184
F60 2218
F10 2480 | CRESCENT CITY HMS CRESCENT CITY 11 E CROWDER FLAT CUMMINGS UORRIS INSPECT STA | 50 2
360 3
5175 2
1270 2
4240 3 | 0 160
0 470
1 230 | N 16W | K M | 41-45-18
41-53
39-50 | 124-12
123-59-30
120-44
123-38
121-54-30 | 900
PN2188
900 | 1941
1947
1958
1927
1959 | | | 8
25
23
47 | | F00 2749
F20 2899
F60 2910
F70 3025
F60 3030 | ELK VALLEY ETNA EUREKA WB CITY FERNDALE 8 SSW FERNOALE 2NW | 1711 3
2912 2
43 2
1445
10 3 | 8 42:
2 05:
6 01: | N 09W | Н
Н
Р Н
К Н | 40-29-30 | 123-43
122-54
124-10
124-20-24
124-16-36 | 900
900
900
900
900 | 1938
1935
1878
1959
1963 | | | 8
47
12
12
12 | | F50 3041
F30 3122
F40 3130
F30 3151
F00 3173 | FIELDBROOK 4 D RCH
FOOTHILL SCHOOL
FOREST GLEN
FORKS OF SALMON
FORT DICK | | 5 460
2 013
4 100 | N 05W | A H | 41-40-42 | 124-01-06
122-22-18
123-20
123-19-00
124-09 | 900
900
900 | 1956
1962
1930
1959
1951 | | | 12
53
47
8 | | F00 3173-12
F20 3176
F20 3179
F20 3182
F60 3194 | FORT JONES CAA | 3324 1
2930
2720
60 3 | 2 431 | | См | 41-35
41-32
41-39
40-39 | 122-43
122-52
122-51
124-09 | 901
900
900
900 | 1941
1936
1955 | | | 47
47
47
47 | | F60 3217
F60 3320
F60 3322
F60 3322-01
F00 3357 | FOX CAMP GARBERVILLE GARBERVILLE R S GARBERVILLE HMS GASQUET RANGER STA | 2500
340 2
540
540 2
384 2 | 4 045 | 03E | R H
H
G M
N H | 40-00 | 124-03-54
123-46
123-47
123-47-40
123-58 | 80 ¹ ;
900
900
809
900 | 1960
1938
1953
1935
1940 | | | 12
12
12
12 | | F20 3361-03
F20 3363
F20 3614
F60 3647
F30 3761 | GREENVIEW GRIZZLY CRK REDWOOD | 2760 1
5200
2818 2
500 1
1090 1 | 8 416
9 43
1 01 | N 07W
N 09W
N 02E | LHHHH | 41-24-30
41-33
40-29 | 122-33-12
122-40-30
122-54
123-47
123-23 | 900
900
900 | 1950
1956
1943
1963
1914 | | | 47
47
47
12
47 | | F60 3785
F40 3859
F60 3956
F30 3987
F70 4074 | HARRIS 7 SSE HAYFORK RANGER STA HIGH ROCK HILTS HONEYDEW 2 WSW | 1910 2
2340 1
900 1
2900 2
380 | 2 31/2
5 019
3 48/ | 12W
02E
07W | N H R M C H | 40-33
40-22-48
42-00 | 123-36-42
123-10
123-56-30
122-38
124-09-00 | 900
808
900
900 | 1953
1915
1960
1939
1953 | | | 23
53
44
47
12 | | F70 40/4-01
F50 40/7
F40 4082
F40 4084
F60 4158 | HONEYDEW HUNTER HONOR CAMP 42 HOOPA HOOPA 2 SE HUMBOLT BAY LBS | 380
1875 3
350 2
315 3 | 1 076 | 03E | м н
к н
н | | 124-09-06
123-52-42
123-40
123-39
124-13 | 900
900
907 | 1955
1956
1941
1954
1909 | | | 12
12
12
12
12 | | F40 4191
F60 4196
F00 4202
F60 4305
F30 4499-35 | HYAMPOM IAJUA BUTTES IDLEWILD HMS ISLAND MTN KENO OREGON | 1260 2
3050
1250 | 5 05: | 04E | D H
G H | | 123-28
123-50
123-46-12
123-29-30
121-56 | 900
900
900
006
900 354403 | 1940
1953
1946
1943
1927 | | | 53
12
8
53
61 | #### INDEX OF CLIMATOLOGICAL STATIONS FOR 1968-69 NORTH COASTAL AREA | | Station | | | | | fract | Meridian | | | | · _ | | | | de | |--|--|--------------------------------------|--------------------|---------------------------------|--------------------------|------------------|-------------|--
--|---------------------------------|-------------------------------|--------------------------------------|-----|---------|----------------------------| | Mumber | Name | Elevation
(In Feet) | Section | Township | Range | 40-Acre Tract | Base & Me | - Latitude | - Langitude | Cooperato | Cooperator
Index
Number | Record | _ a | Missing | County Cad | | F30 4577
F30 4578
F30 4500
F30 4500=35
F60 4587 | KLAMATH
KLAMATH 2
KLAMATH GLEN
KLAMATH FÄLLS 2 SSW
KNEELAND 10 SSL | 25
70
50
4098
2356 | 18 | 13N
13N
03N | 02E | Q | н нжн | 41-31
41-34
41-31
42-13
40-38 | 124-02
124-02
123-59
121-47
123-54 | 900
900
907
007
900 | 354506 | 1941
1948
1884
1954 | | | 8
8
61
12 | | F50 4602
F60 4690
F60 4098
F10 4838
F60 4851 | KORBEL LAKE MOUNTAIN LAKE PILLSBURY NO 2 LAVA BEDS NAT MON LAYTONVILLE | 1740 | 21
10
28 | 06N
05S
18N
45N
21N | 07E
10W
04E | Р | HHMMM | 40-52-00
40-01
39-25
41-43-48
39-42 | 123-57-30
123-24
122-59
121-30-30
123-29 | 900
900
900
900
900 | | 1937
1939
1964
1940
1940 | | 6 | 12
53
17
47
23 | | | LAYTONVILLE 3 SW LAYTONVILLE FS LITTLE SHASTA LONG BELL STATION MAD RIVER RANGER STA | 1900
1640
2725
4375
2775 | 1
26
20 | 42N | 15W
05W
05E | СВ | IXXXI | 39-39-30
39-42
41-43
41-28
40-21 | 123-31-30
123-29
122-23
121-25
123-32 | 901
905
900 | | 1917
1960
1958
1943 | | | 23
23
47
25
53 | | F20 5324
F10 5505
F10 5501-35
F60 5676
F60 5711 | MARBLE VLY GS MEDECINE LAKE MERRIL 2NW ORE MINA 3 NW MIRANDA 4 SE | 5800
6660
4080
2875
263 | 10
34
28 | 43N
405 | 03E
10E
07E | A | H H W H H | 41-34
41-35
42-03
40-00-06
40-11 | 123-12
121-37
121-38
123-23-30
123-47 | 900
900
900 | 355505 | 1946
1906
1927
1964 | | 21 | 47
47
61
53
12 | | F60 5713
F20 5783
F20 5785
F10 5941
F40 6032 | MIRANDA SPENGLER RCH
MONTAGUE
MONTAGUE 3 NE
MOUNT HEBRON R 5
MUMBO BASIN | 400
2500
2640
4250
5700 | 27
18
32 | 45N
46N | 06W
05W
01W | Q | M
M | 40=12
41=43=42
41=45
41=47
41=12 | 123-46
122-31-36
122-28
122-00
122-32 | 900
900
900
900 | 045783 | 1939
1888
1948
1942
1946 | | 5 | 12
47
47
47
53 | | F60 6050
F30 6328
F60 6408
F50 6497
F50 6497-01 | MYERS FLAT
OAK KNOLL HANGER STA
ULD HARRIS
ORICK
ORICK 3 NNE | 1963
2225
10 | 30 | 025
46N
045 | 09W
05E | G | H M H | 40-15-40
41-50
40-05-00
41-11
41-19-24 | 123-52-00
122-51
123-39-42
124-03
124-02-30 | 900
907 | | 1950
1942
1956 | | | 12
47
12
12 | | F50 6497-02
F50 6498
F30 6508
F30 6509
F30 6513 | URICK ARCATA REDWOOD URICK PRAIRIE CREEK URLEANS ORLEANS BSW ORLEANS RS | 161
403 | 31 | 11N
11N
11N
10N | 01E
06E | K | H | 41-19-24
41-22
41-16
41-14-24
41-18 | 124-02-36
124-01
123-32
123-39-24
123-32 | 900
900 | | 1954
1937
1885 | | | 12
12
12
12 | | F50 6745
F70 6835-01
F70 6835-02 | PATRICKS PT ST PK | 250
175
900 | 3
19
19 | 09N
025
01S
035 | 02W
02W
04E | L
0
8
A | H
H
M | 41=08=12
40=19=30
40=22=24
40=11=42 | 124-09-00
124-16-48
124-18-30°
123-46-00
122-51-24 | 804 | | 1947
1958
1953
1963
1960 | | | 12
12
12
12 | | F60 7132
F50 7342
F60 7404
F20 7571-11 | PRATT MOUNTAIN REDWOOD CRK OKANE RICHARDSON GROVE ROSS-BROOKS ROUND GROVE OREGON | 3890
850 | 15
13 | 06N
05S | 03E
03E | | H | 40=0 /
40=54
40=02
-
42=20 | 123-41
123-49
123-47 | 900
907
900
901 | 357354 | 1953
1964
1961 | | | 12
12
12
47
61 | | F40 7698
F30 8025
F30 8039
F60 8045
F63 8047 | SALYER RANGER STA
SAWYERS BAR R S
SCHOOLHOUSE PEAK
SCOTIA
SCOTIA TELEMARK | 623
2169
3060 | 14 20 | 06N | 05E
11W | | H
M
H | 40-53
41-18
41-09
40-29
40-30 | 123-35
123-08
123-53
124-06
124-06 | 900
900
900
900
907 | | 1931
1931
1953
1926 | | | 53
47
12
12
12 | | F30 8083-01
F70 8162
F60 8163
F00 8311-01 | SEIAO VALLEY R S
SMELTER COVE
SMERWOOD VALLEY
SMITH RIVER 2 WNW
SOMESBAR ÜKONOM RS | 1371
55
2170
195
727 | 16
32
21 | 05S
20N
18N | 01E
14W
01W | FA | H | 41-50-36
40-02
39-32-36
41-50-30
41-23 | 123-11-42
124-04
123-26-30
124-10-42
123-28 | 905
900
901
905 | PN8919 | 1953
1959
1958
1951
1965 | | | 47
12
23
8
12 | | F60 8392
F30 8443-35
F60 8440
F60 8668-50
F40 9024 | SOUTH FORK SPRAGUE RIVER ORE STANDISH HICKEY PARK SUNNY BRAE TRINITY OAM VISTA PT | | 14
3
33 | 365
23N
06N | 10E
17W
01E | F | W | 40-20-42
42-21
39-52-30
40-52
40-48 | 123-54-54
121-30
123-43-30
124-04
122-46 | 006
900
900 | 358007 | 1944
1953
1949
1965
1959 | | | 12
61
23
12
53 | | F10 9053 | TULELAKE TULELAKE INSP STN TWO ROCK UPPER MATTOLE WEAVERVILLE RANGER S | | 6
31
33 | 47N
44N
02S | 05E
07E | F | М | 41-5d
41-36
39-22
40-15
40-44 | 121-28
121-12
123-27
124-11
122-56 | 900 | 049057 | 1932 | | | 47
25
23
12
53 | | F20 9499
F60 9527
F70 9654
F40 9675-35
F60 9684 | WEED FO WEOTT 2SE WHITETHORN | 3593
600
1050 | 1
12
15
1 | 41N
025
05S
29N | 05W
02E
02E
10W | MHEC | M
M | 41-25
40-15-29
40-01-18
40-23-54
39-25 | 122-23
123-53-40
123-56-12
123-03-18
123-21 | 900 | | 1957
1961
1962
1963
1950 | | | 47
12
12
53
23 | | F60 9685
F60 9686
F20 9866
F60 9940 | FILLITS HOWARD RS
WILLITS NW PAC RR
YREKA
ZENIA 1 SSE | | 5
18
27 | 1 / N
1 B N
4 5 N | 13W
13W
07W | L | M
M
M | 39-21
39-24-12
41-43
40-11-18 | 123-19
123-21-06
122-38
123-28-54 | 900
006
900 | | 1935
1911
1871
1950 | | 5 | 23
23
47
53 | #### TABLE A-2 PRECIPITATION DATA NORTH COASTAL AREA | | | | | | | | Precipito | tion In Inch | •• | | | | | | | | | |--|---|--------------------------|--|-----------------------------------|--------------------------------------|--|---|---|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|--------------------------|--------------------------------------|---| | Station Name | Total
July I | | | 198 | 8 | | | | | | | 1986 | | | | | Total
Oct.1 | | | To
June 30 | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | To
Sept.30 | | NORTH COASTAL AREA F | | | | | | | | | | | | | | | | | | | SMITH RIVER FO | | | | | | | | | | | | | | | | | | | CRESCENT CITY 1 N CRESCENT CITY 7 ENE CRESCENT CITY H.M.S. CRESCENT CITY 11 E ELK VALLEY | 89.07
96.55
111.78
79.40 | .40
.14
.32
.11 | 5.30
4.75

4.71
3.72 | 1.05
1.41
1.88
1.15 | 5.81
7.39
8.51
4.94 | 10.97
15.78

16.54
12.35 | 26.24
18.56

24.03
19.68 | 18.29
21.36

25.05
19.61 | 10.75
14.14

15.69
9.08 | 2.49
3.47
2.27
5.60
3.10 | 5.04
6.27
4.24
6.59
4.21 | 1.85
2.42
1.78
2.46
1.02 | .88
.86

.61
.51 | .07
.05
.04 | .05
.04

T | 3.08
3.99
2.83
3.56
3.50 | 85.52
94.33
108.68
78.00 | | FORT DICK GASQUET RANGER STATION IDLEWILD H.M.S. SMITH RIVER 2 WNW | 89.91
97.16
83.94
86.44 | .45
.09
.06
.45 | 6.05
4.18
3.44
6.72 | 1.19
1.57
1.32
1.85 | 6.30
7.17
6.29
6.90 | 13.76
16.11
12.54
15.08 | 16.94
21.13
21.24
16.99 | 18.56
20.02
18.03
15.80 | 12.90
14.33
10.46
10.28 | 3.17
4.15
3.83
3.30 | 6.94
5.80
4.91
5.16 | 2.71
2.28
1.46
2.86 | .94
.33
.36
1.05 | .04
.00 | .05
.03
.00 | 4.45
3.25
1.86
4.75 | 86.72
94.64
80.98
82.21 | | LOST RIVER - BUTTE VALLET | | | | | | | | | | | | | | | | | | | DORRIS INSPECTION STA
LAVA BEDS NAT'L MON
MOUNT HEBRON R S
TULELAKE
TULELAKE INSP STA | 13.88
21.52
11.76
13.16
15.29 | .01
.02
.00
.00 | 1.61
2.33
1.25
1.98
.73 | .19
.11
.08
.16 | .82
1.13
.51
.74
.78 | 1.87
1.30
1.28
1.50
1.13 | 1.80
4.51
1.85
2.00
3.00 | 3.31
4.97
2.79
2.82
5.28 | .98
2.02
1.16
.95
1.58 | .23
.59
.21
.55 | 1.09
1.11
1.13
.59
1.42 | .98
1.01
.36
.45
.21 | .99
2.42
1.14
1.42
.61 | .23
.07
.33
.28 | .00 | .26
.01
.17
.04 | 12.56
19.14
10.93
11.34
14.66 | | SHASTA - SCOTT VALLEYS | 20 ali | 12 | 1 55 | | .74 | 1.28 | 1.44 | 2.14 | 1.03 | 22 | 1 25 | 1.02 | 1.33 | .17 | .00 | .20 | 11.03 | | BIG SPRINGS 4 E CALLAHAN RANGER STA ETHA FORT JONES 6 ESE FORT JONES RANGER STA | 12.34
25.01
25.02
25.80
22.86 | .13
.23
.04
.00 | 1.55
•7 ⁴
•83
•70
•67 | .00
.23
.22
.10 | 1.47
1.70
1.34 |
2.06
3.07
2.80
2.99 | 7.76
6.12
4.30
5.20 | 5.81
8.02
6.90
7.98 | 3.39
2.27
1.50
1.85 | .33
.44
.17
.50 | 1.35
1.43
.45
3.10
.64 | .44
.12
1.30
.52 | 1.57
2.24
2.90
1.31 | .04
1.39
.20
.53 | .00 | .16
.22
.30
.24 | 24.01
25.54
25.50
22.83 | | GAZELLE EPPERSON
GREENVIEW
LITTLE SHASTA
MONTAGUE
MONTAGUE 3 NE | 16.11
23.69
15.55
15.06 | .00
.07
.00
.01 | 2.86
•57
.92
1.09 | .03
.05
.10
.21 | .44
1.30
1.36
.57 | 1.57
2.70
1.77
2.10
1.10 | 1.70
5.40
1.19
1.75
1.66 | 3.20
10.09
4.12
5.20
4.54 | 1.80
1.55
1.33
.30
1.32 | .44
T
.43
.64 | 1.06
.00
1.43
1.18
1.04 | .57
.60
.73
.35 | 2.44
1.36
2.17
1.66
2.07 | 1.37
.25
2.08
.27
.95 | .00 | .19
.33
.25
.10 | 14.78
23.58
16.86
14.12 | | WEED FIRE DEPARTMENT | 29.95 | .00 | 1.47 | .15 | 1.48 | 1.65 | 7.00 | 7.60 | 4.58 | .76 | 2.49 | 1.66 | 1.11 | .16 | .00 | .25 | 28.74 | | YREKA KLAMATH RIVER F3 | 22.45 | .02 | 1.73 | .14 | .91 | 2.53 | 4.36 | 6.65 | 1.25 | .45 | 1.09 | .14 | 2.88 | .05 | .00 | .15 | 20.76 | | CECILVILLE 5 SE
CLEAR CREEK
COPCO DAM NO. 1
FOOTHTLL SCHOOL
FORKS OF SALMON | 42.20
66.23
20.58
17.39
52.25 | .30
.00 °
T | 2.90
2.99
1.17
1.17
1.68 | .44
.62
.17
.06
.28 | 2.89
4.57
1.29
1.04
3.76 | 3.90
9.53
3.52
1.80
7.55 | 9.54
17.47
2.72
1.81
14.81 | 12.71
17.65
6.47
5.28
13.73 | 4.39
8.10
1.53
1.97
5.60 | .55
1.75
.67
.23
1.40 | 1.97
2.17
1.50
2.06
2.35 | .67
.61
.31
.57 | 1.94
.77
1.23
1.40 | .14
1.10
.64
.00 | .00 | .31
.61
.21
.30 | 39.01
64.33
20.09
16.46
50.81 | | HAPPY CAMP RANGER STA
HILTS
KLAMATH
GAK KNOLL RANGER STA
ORLFANS | 58.39
23.22
91.30
31.96
58.98 | .00
.00
.20
.00 | 2.66
1.08
5.50
.97
3.46 | •34
•39
1.50
•37
•60 | 3.65
1.26
5.40
1.63
4.62 | 8.47
2.42
16.20
4.36
8.54 | 15.97
5.75
16.75
7.67
11.30 | 15.93
6.30
22.80
9.30
17.44 | 6.56
1.79
10.60
2.05
6.92 | 1.60
.38
3.80
.73
1.53 | 1.40
1.01
6.20
1.46
2.99 | .87
1.86
1.93
•99 | .94
.98
.42
2.43 | .82
.30
T
.22 | .00
.00
T | .46
.24
2.50
.01 | 56.67
22.29
86.60
30.85
55.85 | | SAWYERS BAR RANGER STA
SEIAD VALLEY R S
SOMESBAR-UKONOM R S | 48.27
49.76
69.24 | .00 | 2.20
2.21
3.33 | .43
.49
.58 | 4.58
3.45
5.06 | 7.07
7.45
9.56 | 11.11
11.61
16.44 | 14.16
15.19
19.93 | 3.82
4.30
7.25 | 1.21
1.07
2.11 | 1.77
1.45
3.40 | .53
1.14
1.03 | 1.39
1.40
.55 | .27
.18
.51 | .00 | .43
.26
.39 | 46.34
47.50
66.23 | | TRINITY RIVER F4 | | | | | | | | | | | | | | | | | | | BIG BAR RANGER STATION
BURNT RANCH 1 S
BURNT RANCH H.M.S.
COFFEE CREEK R S
FOREST GLEN | 49.00
59.84
56.42

86.11 | .00 | 1.66
2.30
2.30
1.50
2.50 | .29
•33
•35
•20
•24 | 2.91
2.74
2.34
3.40
4.16 | 5.10
7.00
6.83
7.00
8.28 | 13.78
16.50
16.00
20.50
22.21 | 15.79
15.41
13.89
18.00
26.71 | 6.09
8.57
8.17 | 1.79
1.78
1.56

2.02 | 1.09
3.08
2.83
3.60
4.60 | .17
.77
1.01
1.00 | .33
1.36
1.14
2.10
1.35 | .04
.07
.02
.00 | .00 | .31
.53
.46
.30 | 47.40
57.81
54.25
83.61 | | HAYFORK RANGER STA
HOOPA 2 SE
HYAMPOM
SALVER RANGER STATION | 45.56
73.05
70.45
52.36 | .02
T
.00 | 1.01
3.61
3.65
2.18
3.19 | .16
•39
.40
•33
•35 | 1.39
3.81
4.09
1.88
3.13 | 4.47
9.71
10.04
6.90
9.21 | 15.04
20.33
17.64
15.45
RE | 12.82
19.90
19.18
14.04 | 6.55
8.98
8.15
7.39 | 1.38
2.30
2.38
1.04 | 1.32
3.02
3.75
1.88 | .20
.55
.44
.40 | 1.22
.43
.73
.87 | .10
.08
T | .00 | .07
.40
.40 | 44.56
69.51
66.80
49.97 | | TRINITY DAM VISTA PT | 39.07 | .00 | 1.44 | .18 | 1.69 | 4.52 | 10.57 | 10.48 | 5.62 | 1.44 | 1.30 | .97 | .86 | T | .00 | .17 | 37.62 | | WEAVERVILLE R S MAD RIVER F5 | 44.13 | .00 | 1.08 | .18 | 1.88 | 5.25 | 11.96 | 13.47 | 5-59 | 1.50 | 1.40 | -15 | 1.67 | .02 | .00 | .17 | 43.06 | | ARCATA AIRPORT BIG LAGOON BLUE LAKE FIELDBROOK 4D RANCH HONOR CAMP 42 | 54.81
70.28
56.55
83.22
89.94 | .15
.09
.13
.10 | 3.46
4.42
2.93
5.10
6.02 | .84
.88
.89
1.10
1.28 | 3.57
4.29
2.80
4.02
4.89 | 8.56
9.08
7.71
12.50
15.68 | 9.53
14.69
11.73
14.20
17.27 | 12.84
16.48
14.93
25.25
21.46 | 9.07
10.55
7.08
11.15
11.85 | 2.00
2.32
2.55
3.40
3.62 | 3.53
5.02
3.93
4.75
5.48 | 1.08
1.46
.94
1.10
1.74 | .18
1.00
.93
.55
.48 | .48
.40
.03
T | .04
.00
.03
.00 | .58
1.25
.50
1.30
1.26 | 51.46
66.54
53.16
78.22
83.90 | | MAD RIVER RANGER STA
ORICK 3 NNE
ORICK ARCATA REDWOOD
ORICK PRAIRIE CRK PK | 60.53
75.53
72.01
69.40 | .09
.00
.14
.13 | 3.26
2.46
5.64
5.35
5.67 | .94
.32
1.15
1.06 | 3.29
3.82
3.70
3.64
3.99 | 8.62
9.90
10.77
11.52
9.95 | 12.14
19.78
14.10
12.17
14.63 | 15.77
19.62
17.87
18.41
14.56 | 7.55
12.36
9.64
9.40
8.66 | 2.53
1.76
3.30
3.22
3.73 | 4.09
4.37
5.10
5.11
4.80 | 1.08
.45

1.37
1.31 | 1.17
.69

.63 | .02
.00

.41
.48 | .03
.00

.00 | .36
.48

1.13
1.24 | 56.65
73.23
67.01
64.32 | | PATRICKS POINT ST PK | 71.75 | .18 | 4 - 53 | 1.09 | 4.94 | 10.76 | 12.89 | 17.24 | 10.41 | 2.46 | 4.48 | 2.05 | .72 | •39 | .07 | 1.39 | 67.80 | ⁻ No r cord or record imcomplete T Trace RE Record ended #### TABLE A-2 (Continued) PRECIPITATION DATA NORTH COASTAL AREA | | | | | | | | Precipita | tion to Inch | | | | | | | - | | | |---|---|--------------------------|--------------------------------------|----------------------------------|--------------------------------------|---------------------------------------|---|---|---|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|--------------------------|--------------------------|----------------------------------|--| | Station Name | Total
July I | | | 19 | 68 | | | | | | | 1989 | | | | | Total | | | To
June 30 | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jon. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct.I
To
Sept.30 | | ECRITH COASTAL AREA P | | | | | | | | | | | | | | | | | | | ADANAC LODGE ALDERPOINT BRANSCOMB 2 IN BRIDGEVILLE 4 NAW BULL CREEK | 92.03
63.47
93.02
80.90 | .00
T
.00
.07 | 5.10
4.22
4.07
3.91 | .42
.23
.57
.85
.26 | 4.98
2.25
4.59
4.23
3.92 | 8.53
5.29
8.84
10.37 | 22.86
17.93
23.80
17.73
25.91 | 24.95
17.94
27.04
21.74
17.17 | 16.06
9.98
15.05
13.19
16.93 | 2.84
1.84
2.74
2.72
2.61 | 5.69
3.61
5.58
5.12
4.91 | .27
.06
.39
.40 | .33
.12
.35
.57 | .00
T
T
T | .00 | .40
.27
.49
1.27 | 36.91
59.29
88.57
77.3- | | BURLLINGTON STATE PK COVELO COVELO EEL RIVER R S CLIMAINGS EUREXA W B CITY | 56.18
89.96
47.50 | .00
.00
.00
.00 | 4.26
4.23
4.61
1.98 | .18
.08
.08
.46
.60 | 3.76
2.56
2.56
4.32
2.81 | 4.44
5.15
7.75
5.88 | 26.23
16.08
15.79
25.60
8.32 | 22.56
14.73
14.27
23.64
13.92 | 9.11
16.02
7.82 | 2.65
1.87
9.85
2.67
1.56 | 4.63
2.28
2.84
4.41
3.22 | .59
.47
.10
.35 | .29
.30
.23
.13 | .00
.00
.00
.00 | .00
.00
.00 | .11
.11
.34
.36 | 51.95
85.23
45.29 | | FERMINALE 2 IN PORTUNA FOX CAMP GARBERVILLE GARBERVILLE H.M.S. | 54.23
56.09
72.15
81.36 | .22
.00
.05
.00 | 2.11
2.26
1.89
2.06 | •35
•33
•48
•16
•50 | 2.56
2.50
3.28
3.70 | 5.81
5.52
6.51
6.65 | 11.55
13.21
27.90
22.68
26.18 | 13.88
14.86
24.06
18.97
21.47 | 11.10
10.79
12.66
13.44 | 1.45
2.04

2.50
2.56 | 3.57
3.42

5.48
4.20 | 1.10
.74
.12
T | .53
.42

.02
.33 | .16 | .01
T | .38
.36
1.94
.28 | 52.10
53.56
70.35
79.21 | | GRIZZLY CRK REDWOOD
HARRIS 7 SSE
HIGH ROCK
KNEELAND 10 SSE
LARE MOUNTAIN | 85.45
82.64
73.75
71.00 | .00
.00
.03 | 2.85
3.47
2.47
3.81
3.47 | .57
.43
.21
.72
.61 | 3.69
3.14
6.66
3.26
2.80 | 7.98
7.01
6.59
10.01
7.63 | 18.37
24.96
21.53
17.24
19.77 | 24.54
21.29
18.36
18.21 | 13.60
14.76
16.23
10.22
12.71 | 2.65
2.20
2.39
3.20
1.88 | 4.82
4.36
4.52
4.94
3.31 | .46
.26
.43
.77 | .50
.32
.32
1.19 | .03
T
.00
.00 | .00
.00
.00 | .80
.24
.37
1.31
.27 | 81.79
80.33
70.50
67.19 | | LARE PILLSBURY NO. 2 LAYTONVILLE MINA 3 NW MIERS FLAT OLD EARRIS | 64.77
60.67
79.81
90.48 | .00
.00
.00 | 2.05
5.30
3.40
1.69
3.53 |
.15
.20
.40
.52 | 2.87
3.25
2.76
3.74
4.09 | 6.00
6.51
9.24
7.86
7.89 | 16.65
23.96
16.90
23.94
20.42 | 19.71
1.71
13.16
21.67
31.84 | 11.55
32.63
8.10
13.39
13.55 | 1.74
1.90
2.44
2.17
2.53 | 2.76
3.27
3.87
3.94
5.25 | .20
.15
.00
.44 | 1.09
.15
.40
.45
.56 | .00
.00
.00
.01 | .00 | .00
.17
.32
.45 | 62.57
73.70
57.19
73.06
87.09 | | PHILLIPSVILLE 1 SE
RICHARDSON GROVE
SCOTIA
SEERNOOD VALLET
STANDISH HICKEY PARK | 88.14
64.75 | .00
.00
.06
.00 | 1.81
2.94
1.53
.62
4.35 | .23
.19
.19
2.33
.36 | 3.85
5.21
3.23
3.60
4.70 | 7.09
7.40
5.64
7.10
7.08 | 19.66
26.30
17.37
23.84
22.23 | 20.09
24.98
16.19

24.33 | 10.41
12.85
13.52 | 1.97
3.07
2.08 | 3.76
4.64
3.78

4.36 | .20 | .17
.43

2.25 | .00 | .00 | .37
.70 | 85.36
63.68 | | SUMEY BRAE WEOTT 2 SE WILLIES 1 ME WILLIES HOWARD R S WILLIES H W PAC R B | 52.16
85.17
72.09
63.12
67.61 | .10
.00
.00
.00 | 3.07
1.86
2.11
1.33
1.66 | .81
.18
.21
.21 | 2.96
4.41
2.29
2.91
2.15 | 7.28
7.42
5.45
5.38
5.74 | 9.48
26.24
20.89
17.66
13.72 | 12.84
23.32
22.79
19.17
22.70 | 8.43
12.70
12.20
11.29
10.87 | 2.18
3.84
2.37
1.92
2.07 | 3.34
4.59
3.30
2.94
2.98 | 1.07
.58
.05
.11 | .60
.03
.43
.20 | .25
.00
.00
.00 | .03
.00
.00
.00 | .56
.37
.09
.10 | \$9.03
83.50
69.56
61.68
65.65 | | ZENIA 1 SSE | 85.03 | .00 | 2.75 | .64 | 4.03 | 8.33 | 23.55 | 24.60 | 13.59 | 2.67 | 3.67 | .13 | -72 | .00 | .00 | .75 | ê2.39 | | MATTCLE RIVER F7 | | | | | 0.6 | | | - 06 | | | | | | | | | | | FERUDALE 8 SSW
HOMEYDEW 2 WSW
HOMEYDEW HUNTER
FETROLIA
PETROLIA 4 NW | 128.80
132.25
82.56
61.03 | .36
T
.00
.10 | 1.87
4.67
4.49
3.75
3.08 | .38
.31
.29
.49 | 2.86
7.05
7.00
3.56
2.93 | 6.18
9.72
11.07
7.48
6.39 | 9.70
33.95
33.85
19.05
12.15 | 7.86
3½.93
31.37
20.56
13.95 | 25.88
26.54
18.29
12.17 | 3.49
8.91
2.50
3.24 | 6.34
4.12
4.82
4.10 | 1.34
2.26
4.40
1.48
1.73 | 1.47
.20
.21
.19
.62 | .00 | .00
.00 | .61
.62
.60
.58
.83 | 124.44
126.07
78.60
58.11 | | SHELTER COVE
UPPER MATTOLE
WHITETHORN | 61.20
96.39
95.33 | .00
.00 | 3.30
3.94
3.30 | •53
•33
•00 | 3.37
5.58
6.83 | 7.71
9.14
11.70 | 12.64
23.17
20.75 | 16.28
24.40
27.43 | 9.83
19.27
14.82 | 2.56
2.86
3.89 | 3.74
5.49
5.05 | 1.01
1.68
1.33 | .23
.53
.23 | .02
.00
.05 | .00
.00 | 1.80
.67
.92 | 59.19
92.79
93.00 | ŧ. | | | | | | | | | | | | | | | | | | | 1 | ⁻ No record or record incomplete T Trace RS Record ended TABLE A-3 STORAGE GAGE PRECIPITATION DATA NORTH COASTAL AREA | | | | 1968-69 S | eason | |-----------------------------------|---------------------|--------------------------------------|-----------|-------------------------| | Station | Measuring
Agency | Measur
Peri | | Precipitation in Inches | | NORTH COASTAL AREA | | | | | | SMITH RIVER | | | | | | Camp Six Lookout | DWR | 7-09-68 | 7-08-69 | 104.18 | | LOST RIVER-BUTTE VALLEY | | | | | | Bray 10 WSW
Crowder Flat | DWR
DWR | 8 - 20-68
7 - 17-68 | | 30.87
25.03 | | Long Bell Station Medicine Lake | DWR | 7-18-68
8-20-68 | 7-11-69 | 35.90 | | SHASTA-SCOTT VALLEYS | DWR | 0-20-00 | 1-10-09 | 52.13 | | Gazelle Lookout | DWR | 7-00-68 | 7-09-69 | 25.16 | | CLAMATH RIVER | DWIL | 1 09 00 | | <i>E)</i> • <i>L</i> 0 | | | DWR | 8-20-68 | 7-08-69 | 49.08 | | Beswick 7S
Blue Creek Mountain | DWR | 8-06-68 | | 119.36 | | TRINITY RIVER | | | | | | Board Camp Mountain | DWR | | 7-07-69 | 76.98 | | Mumbo Basin | DWR | J-T0-00 | 7-10-69 | 72.66 | | CEL RIVER | | | | | | Plaskett | DWR | 8-15-68 | 7-24-69 | 76.91 | #### TABLE A-4 EVAPORATION DATA The definition of terms and the abbreviations used in Table A-4 are as follows: Evap - The total amount of water evaporated from the pan in inches for the month. Wind - The amount of movement of air over the pan in miles for the month. Avg Max - The arithmetic average of daily maximum water temperatures in degrees Fahrenheit for the month. Avg Min - The arithmetic average of daily minimum water temperatures in degrees Fahrenheit for the month. | | | | Ev | aparation in | n Inchas | | | Wind i | n Tatal Mile | | | Wo | ater Tempero | itura in Degr | ees Fahrenh | ait | | | |-------------------------|------------------------------------|--------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|-----------------------------|------------------------------| | Station Name | | Tatal
July I | | | 19 | 68 | | | | | | | 1969 | | | | | Tatal
Oct I | | | | Ta
June 30 | July | Aug. | Sept. | Oct. | Nov. | Oec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | To
Sept 30 | | NORTH COASTAL AREA | LOST RIVER-BUTTE VALLEY | TULELAKE | Evap
Wind
Avg Max
Avg Min | | 10.37 | 7.07 | 6.61 | 3.53 | | | | | | | 9•32 | 7.34 | 9.57 | 9.61 | 8.41 | | | KLAMATH RIVER | SEIAD VALLEY RANGER S | Evap
Wind
Avg Max
Avg Min | | 9.09 | 6.31 | 4.73 | | | | | | | | | | 8.48 | 8.13 | 5.08 | | | TRINITY RIVER | | | | | | | | | | | | | | | | | | 0 | | TRINITY DAM VISTA PT | Evap
Wind
Avg Max
Avg Min | | 10.78
1179 | 7.02
1201 | 6.11 | 2.42
1078 | 908 | | | | 1206 | 3.61
1258 | 7.62
1554 | 7.02
1216 | 10.21
1257 | 9.79
1258 | 5.51
10.39 | ()=== | | WILLOW CREEK 1 NW | Evap
Wind
Avg Max
Avg Min | | | | | | | | | | | RECORD | BEGAN | 6.00
300
84.9
59.0 | 8.47
50d
93.2
61.1 | 7.04
527
89.2
50.7 | 4.47
333
85.7
54.7 | | | EEL RIVER | FERNDALE 2 NW | Evap
Wind
Avg Max
Avg Min | 28.96
11321
67.1
49.2 | 4.27
885
79.2
57.2 | 3.89
790
79.8
58.3 | 3.11
591
76.4
55.1 | 1.99
699
68.0
49.3 | 0.79
717
59.2
46.6 | 0.75
1499
50.4
40.2 | 0.48
1188
50.7
40.2 | 0.83
1360
53.4
40.4 | 2.70
1131
65.5
43.7 | 3.15
946
70.5
47.9 | 3.81
848
76.1
53.2 | 3.19
667
76.0
57.8 | 4.66
870
78.8
56.6 | 4.60
735
79.9
56.2 | 3.60
755
76.2
54.3 | 30.5
11415
6".1
4.9 | | IAKE PILLSBURY NO. 2 | Evap
Wind
Avg Max
Avg Min | | 11.17
628
92.1
59.9 | 7.70
602
86.2
58.5 | 6.97
581
82.6
53.8 | 3.24
322
70.3
46.9 | 1.00
160
56.0
43.0 | 0.52
236
44.7
36.1 | 0.36
257
46.4
36.5 | 0.60
214
48.1
37.5 | 3.23
570
64.6
40.3 | | | 7.66
599
87.4
58.6 | 10.83
532
93.3
60.4 | 10.18
503
90.7
57.6 | 6.91
453
84.0
55. | # APPENDIX B SURFACE WATER MEASUREMENTS #### INTRODUCTION This appendix presents surface water data for the 1969 water year, the period from October 1, 1968, to September 30, 1969. The data consist of daily mean discharges, gaging station locations, and summary tables of monthly and annual unimpaired runoff from major streams. Continuous records of stage and flow, together with instantaneous peak flood data are available in the files of the Department of Water Resources. Each station in this appendix has been assigned an identification number. The letter and first digit denote the drainage basin as shown below. The remaining digits identify each station. #### North Coastal Area FO - Smith River Fl - Lost River-Butte Valley F2 - Shasta-Scott Valleys F3 - Klamath River F4 - Trinity River F5 - Mad River F6 - Eel River F7 - Mattole River #### INDEX TO GAGING STATIONS F21300 Little Shasta River near Montague F41540 Weaver Creek near Douglas City F42100 North Fork Trinity River near Helena SURFACE WATER MEASUREMENT STATIONS #### TABLE B-1 ANNUAL UNIMPAIRED RUNOFF Unimpaired runoff is defined as the flow that would occur naturally at a point in a stream if there were: (1) no upstream controls such as dams or reservoirs; (2) no artifical diversions or accretions; and (3) no change in ground water storage resulting from development. TABLE B-1 ANNUAL UNIMPAIRED RUNOFF In Percent of Average | Water Year | Klamath River,
Copco To
Orleans | Salmon River
at
Somesbar | Trinity River
át
Lewiston | Eel River
at
Scotia | |--|---|--|--|--| | Average
Annual
Runoff* | 4332 | 1180 | 1167 | 5146 | | 1915-16
1916-17
1917-18
1918-19
1919-20
1920-21
1921-22
1922-23
1923-24 | | |
129
56
52
99
35
154
67
59 | 84
44
103
28
152
72
54 | | 1924-25
1925-26
1926-27
1927-28
1928-29
1929-30
1930-31
1931-32
1932-33
1933-34 | 88
58
41
77
83
50 | 93
50
65
40
89
86
49 | 128
69
156
91
45
70
34
62
69 | 139
64
153
90
37
68
31
70
71 | | 1934-35
1935-36
1936-37
1937-38
1938-39
1939-40
1940-41
1941-42
1942-43
1943-44 | 83
92
75
183
59
104
103
107
137 | 96
97
83
189
64
108
107
112
147 | 83
88
86
180
49
138
218
155
95 | 99
112
69
209
52
142
160
144
111 | | 1944-45
1945-46
1946-47
1947-48
1948-49
1949-50
1950-51
1951-52
1952-53
1953-54 | 84
118
60
99
74
94
146
153
149 | 96
129
65
105
81
100
152
166
153 | 90
121
63
103
94
73
138
156
138 | 93
117
51
92
81
80
139
156
139 | | 1954-55
1955-56
1956-57
1957-58
1958-59
1959-60
1960-61
1961-62
1962-63
1963-64 | 61
191
100
189
79
80
104
75
136 | 50
186
100
191
85
80
102
81
145 | 63
174
93
231
89
88
104
89
137
68 | 62
198
84
227
80
91
104
77
138
67 | | 1964-65
1965-66
1966-67
1967-68
1968-69 | 165
103
120
78**
130** | 158
94
107
80
142** | 147
115
142
87
150** | 183
100
129
83**
170** | Average Unimpaired Runoff in Thousands of Acre-Feet Computed From the 50-Year Period October 1915 Through September 1965. Preliminary Data Subject to Revision MONTHLY UNIMPAIRED RUNOFF In Percent of Average Preliminary Data Subject to Revision. ** Average Unimpared Runoff in Thousands of Acre-Feet Computed From the 50-Year Period October 1915 Through September 1965. #### TABLE B-3 DAILY MEAN DISCHARGE The streamflow table is arranged in downstream order for each stream or stream system. Stations on a tributary entering between two main stem stations are listed between those stations, and in downstream order on that tributary. A stream gaging station is named after the stream and the nearest post office (e.g., Weaver Creek near Douglas City). The discharges estimated for periods of no record or invalid record are shown with the letter "E". Also qualified by the letter "E" are discharges obtained from extended ratings which exceed 140 percent of the highest measured flow-rate on which the rating curve was based. The discharge figures in this table have been rounded off as follows: 1. Daily flows - cubic feet per second ``` 0.0 - 9.9 nearest Tenth 10 - 999 " Unit 1,000 - 9,999 " Ten 10,000 - 99,999 " Hundred 100,000 - 999.999 " Thousand ``` 2. Monthly means - cubic feet per second ``` 0.0 - 99.9 nearest Tenth 100 - 9,999 " Unit 10,000 - 99,999 " Ten 100,000 - 999,999 " Hundred ``` 3. Yearly totals - acre-feet ``` 0.0 - 9,999 nearest Unit 10,000 - 99,999 " Ten 100,000 - 999,999 " Hundred 1,000,000 - 9,999,999 " Thousand ``` IBLE B-3 ### AILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME F21300 LITTLE SHASTA RIVER NEAR MONTAGUE | AY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |----------------------------|--|---|--|----------------------------------|------------------------------|-------------------------------------|------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------------------|-----------------------------------|----------------------------------| | 1
2
3
4
5 | 2.8
2.8 *
2.8
2.8
2.8 | 3.2
5.1
4.2
3.6
3.6 | 4.5
4.8
4.8
5.9
6.8 | 1.0 E
6.5 E
23
29
32 | 16
12
12
13
13 | 11
11
12
10
11 | 106
90
70
60
71 | 73 #
71
65
62
68 | 45
41
39
38
37 | 13
13 *
13
12
12 | 6.6
6.6
6.3
6.3 | 5.0
5.0
5.0
5.0 *
5.0 | 1
2
3
4
5 | | 6
7
8
9 | 2.8
2.8
2.8
2.8
2.8 | 3.4
3.4
3.6
5.4
4.2 | 7.1
6.2
5.9
7.9
39 | 29
23
16 E
15 E
14 E | 12
12
12
12
14 * | 12
11
11
12
11 | 66
61
59 *
58
60 | 76 *
83
89
92
94 | 32
29
29
29 | 12
11
11
11
11 | 6.3
6.3
6.0
6.0
5.6 | 4.7
4.7
4.7
4.7 | 6
7
8
9 | | 11
12
13
14
15 | 3.4
6.2
4.8
3.8
3.8 | 5.1
9.1
5.1 *
4.0
4.2 | 22
13 *
9.5
7.9
8.7 | 13 E
12 E
15
13
11 * | 25
25
18
16
16 | 11 *
11
11
12
18 | 72
83
69
66
62 | 95
95
94
90
84 | 29
26 *
25
23
23 | 10
9.9
9.5
9.5
9.5 | 5.6
5.6
5.6
5.6
5.6 | 4.7
4.7
4.7
4.7 | 11
12
13
14
15 | | 16
17
18
19
20 | 3.4
2.8
2.8
2.6
4.5 | 3.8
5.6
15
9.5
6.5 | 7.5
8.3
7.5
6.8
6.5 | 9.5
8.7
9.1
22
118 | 15
15
15
16
14 | 30
41
38
29
29 | 71
90
98
95
100 | 80
78
80
76
73 | 21
20
20
23
21 | 9.0
8.5
8.5
8.1
8.1 | 5.6
5.3
5.3
5.3 | 4.7
4.4
5.0
5.3
5.6 | 16
17
18
19
20 | | 21
22
23
24
25 | 3.6 *
3.0
2.8
2.8
2.8 | 5.4
6.5
5.9
5.1
4.5 | 6.8
6.8
6.8
6.8 | 95
44
29
29
29 | 13
12
12
12
12 | 32
49
54
51
56 | 104
102
92
78
71 | 70
68
67
66
64 | 18
18
18
18 | 7.6
7.3
8.1
8.5
8.1 | 5.3
5.3
5.0
5.0 | 5.3
5.0
4.7
4.7
4.4 | 21
22
23
24
25 | | 26
27
28
29
30 | 2.8
2.8
2.8
3.0
3.4
3.2 | 4.8
5.1
5.1
4.5
4. 2 | 6.2
5.9
4.5 E
3.0 E
1.8 E
1.5 E | 37
31
22
21
21
20 | 11
11
9.9 | 71
83
94
106
121
118 | 68
71
80
82
75 | 65
64
57
52
49
47 | 16
16
16
14
14 | 7.6
7.3
6.9
6.9
6.9 | 5.0
5.0
5.3
5.3
5.3 | 4.4
3.8
3.8
4.4 * | 26
27
28
29
30
31 | | AN
AX.
UN.
. FT. | 3.2
6.2
2.6
197 | 5.3
15
3.2
315 | 8.0
39
1.5 E
490 | 25.7
118
1.0 E
1582 | 14.1
25
9.9
781 | 38.0
121
10
2335 | 77.7
106
58
4621 | 73.8
95
47
4536 | 24.8
45
14
1474 | 9.4
13
6.6
578 | 5.6
6.6
5.0
346 | 4.7
5.6
3.8
281 | MEAN
MAX.
MIN.
AC.FT. | WATER YEAR SUMMARY - ESTIMATED - NO RECORD - DISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY. - E AND * | MEAN | | |-----------|---------| | DISCHARGE | DISCHAR | | 24.2 | 180 | | | MAXIMU | M | | | | MINIM | J.M. | | | |-----------|----------|-----|-----|------|-----------|----------|------|-----|------| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 180 | 3.00 | 1 | 20 | 2000 | 1.0 | 123 | 1 | 1 | 2400 | | | | | | | | | | | | TOTAL ACRE FEET 17,540 | LOCATION | | ٧ | MAXIMUM DISCHARGE PERIOD OF | | | F RECORD | | DATUM OF GAGE | | | | |----------|---|-------------|-----------------------------|---------------|-------------|---|---|---------------|------|------|-------| | LATITUDE | LATITUDE LONGITUDE 1/4 SEC. T. & R. OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | | LATTIONE | LONGITODE | M.D.B.&M. | CFS | GAGE HT. DATE | | DISCHARGE | ONLY | FROM | то | GAGE | DATUM | | 41 45 11 | 122 17 58 | NW15 45N 4W | 5910 E | 10.66 | 12/22/64 | 28-NOV 51 8
APR 52-APR 55
SEP 56-DATE | 28-NOV 51 8
APR 52-APR 55
SEP 56-DATE | 1956
1965 | 1964 | 0.00 | LOCAL | Station located S of Ball Mountain Road, 12 mi. NE of Montague, 16 mi. SW of Macdoel. Stage-discharge relationship affected by ice at times. Drainage area is 48.2 sq. mi. 8 - Irrigation season only. #### TABLE B-3 (CONT) #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1969 F41540 WEAVER CREEK NEAR DOUGLAS CITY | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | |----------------------------------|-----------------------------------|--------------------------------------|---------------------------------------|--|---|--|-----------------------------------|-----------------------------------|------------------------------|--|-----------------------------------|-----------------------------------| | 1
2
3
4
5 | 0.8 *
0.9
0.9
1.0 | 3.7
12
8.3
6.3
7.3 | 16 E
16 E
16 E
17 E | 26
28
37
56
67 | 136
121
109
103 * | 170
168
166
149
149 | 288
255
211
187
181 | 129
125
121
112
116 | 75
72
71
70
65 | 17
17
16
15
15 | 4.2
3.7
3.7
3.4
3.7 | 0.9
0.7
0.6
0.7
0.7 | | 6
7
8
9
10 | 1.3
1.3
1.5
1.7 | 6.0
5.6 *
6.0
9.0
7.7 | 17 E
17 E
17 E
19 #
389 * | 75 *
86
91
65
50 | 107
91
169
283
270 * | 151
145
138
132
119 | 153
136
130
129 * | 140
168
181
202
215 | 61
53
49
49
46 | 14
14
14
13 | 3.7 *
3.7
3.4
3.2
3.0 | 0.8
0.6
0.7
0.5
0.4 | | 11
12
13
14
15 |
2.1
3.4
3.7
3.7
4.2 | 9.9
16
9.4
9.9
16 | 187
78
98 *
170
371 | 51
731
1080 *
448
292 | 696 *
509
33 ⁴
299
316 | 112
114 *
114
118
134 | 136
153
145
130
121 | 220
206
200
175
153 | 44
42
38
37
37 | 11
11
10
9.9
9.4 | 3.0
2.8
2.8
2.6
2.4 | 0.5
0.6
0.4
0.5
0.5 | | 16
17
18
19
20 | 3.9
3.9
3.7
3.7
3.9 | 14
17
33
25 * | 183
81
55
42
31 | 183
114 *
138
572
873 | 288
264
266
266
253 | 162
204
257
237
235 | 121
132
140
132
138 | 149
153
149
134
121 | 35
32
32
49
38 | 8.7
8.3
8.3
7.7
7.3 | 2.2
2.1
2.2
2.2
2.2 | 0.8
0.8
1.0
2.1
2.2 | | 21
22
23
24
25 | 3.9
3.9
3.9 *
3.9
3.9 | 13 E
12 E
12 E
18 E
33 E | 26
25
49
121
109 | 874
473
299 *
217
271 | 213
183
168
170
154 * | 255
270
281
268
261 | 151
173
181
147
127 | 119 *
119
121
112
103 | 33
30
27
26
25 | 7.0
6.7
6.7
6.3
6.0 | 2.2
1.9
1.7
1.5 | 2.4
2.2
1.9 *
2.1
1.9 | | 26
27
28
29
30
31 | 3.9
3.9
3.4
5.6
5.2 | 15 E
15 E
16 E
20 E
34 E | 80
52
43
36
32
28 | 452
294
226
177
147
123 | 138
134
198 | 272
303 *
334
354
352
332 | 116
118
130
138
136 * | 98
87
80
80
84
78 | 25
24 *
21
20
18 | 5.6
5.2
4.9
4.7
4.2
3.9 | 1.9
1.9
1.9
1.5
1.2 | 1.5
1.5
1.3
1.2
1.3 | | MEAN
MAX.
MIN.
AC. FT. | 3.1
5.6
0.8
190 | 14.2
34 E
3.7
845 | 78.6
389
16 E
4836 | 278
1080
26
17090 | 227
696
91
12580 | 208
354
112
12810 | 152
288
116
9053 | 137
220
78
8430 | 41.5
75
18
2467 | 9.1
17
3.9
595 | 2.5
4.2
1.1
156 | 1.1
2.4
0.4
66 | WATER YEAR SUMMARY E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY. # - E AND * | MEAN | | MAXIMI | JM | | | |-----------|-----------|--------|-----|-----|------| | DISCHARGE | DISCHARGE | 12.85 | MO. | DAY | TIME | | 95.5 | 1587 | | 1 | 13 | 0300 | | | MINIM | JM_ | | | |------------------|----------------------|---------------|-----------|------| | DISCHARGE
0.4 | GAGE HT. 5.54 | MO . 9 | DAY
10 | TIME | TOTAL ACRE FEET 69110 | | LOCATION | 4 | MAX | CIMUM DISCH | IARGE | PERIOD O | F RECORD | | DATU | M OF GAGE | | |----------|-----------|------------------|--------|-------------|----------|-------------|-------------|------|------|-----------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECOR | D | DISCHARGE | GAGE HEIGHT | PE | RIOD | ZERO | REF. | | LATITUDE | LONGITODE | M.D.B.&M. | CFS | GAGE HT. | DATE | DISCHARGE | ONLY | FROM | то | GAGE | DATU | | 40 40 15 | 122 56 30 | SE36 33N 10W | 3980 E | 12.72 | 12/22/64 | JAN 57-DATE | JAN 57-DATE | 1957 | | 0.00 | LOCAL | Station located 0.2 mi. below State Highway 299 bridge, 1.2 mi. N of Douglas City, 4.2 mi. S of Weaverville. Tributary to Trinity River. Drainage area is 48.4 sq. mi. Station discontinued October 1, 1969. #### TABLE B-3 (CONT) #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1969 F42100 NORTH FORK TRINITY RIVER NEAR HELEMA | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |----------------------------------|----------------------------------|---------------------------------|--|--|---------------------------------------|--|---------------------------------------|--|-----------------------------------|---|--------------------------------------|----------------------------|----------------------------------| | 1 | 21 * | 62 | 187 | 269 | 544 | 484 | 2320 | 1150 | 772 | 216 | 82 E | 46 | 1 | | 2 | 21 | 128 | 169 | 273 | 512 | 148 | 2010 | 1060 | 781 | 235 | 77 E | 42 | 2 | | 3 | 21 | 118 | 159 | 320 | 475 | 436 | 1660 | 1000 | 823 | 212 | 72 E | 41 | 3 | | 4 | 21 | 85 | 152 | 478 | 463 * | 424 | 1380 | 918 | 852 | 198 | 68 E | 40 | 4 | | 5 | 21 | 89 | 204 | 618 | 463 | 415 | 1450 | 949 | 839 | 202 | 63 E | 39 | 5 | | 6
7
8
9
10 | 21
21
21
21
21
21 | 80
80 *
153
358
196 | 218
210
241
250 *
2690 * | 719 *
715
659
610
547 | 463
445
472
682
644 | 415
418
409
400
379 | 1300
1120
1080
1080 * | 1220
1450
1620
1890
2060 | 748
648
558
519
533 | 194
187
178
178 | 58 E
57 E
56 E
54 E
53 E | 38
37
37
37
34 | 6
7
8
9
10 | | 11 | 40 | 171 | 1590 | 536 | 1350 * | 361 | 1220 | 2020 | 499 | 184 | 51 # | 3 ⁴ | 11 | | 12 | 137 | 289 | 878 | 978 | 1420 | 358 * | 1430 | 1880 | 496 | 176 | 51 | 33 | 12 | | 13 | 96 | 193 | 652 * | 1660 * | 1070 | 364 | 1370 | 1770 | 512 | 160 | 48 | 33 | 13 | | 14 | 73 | 160 | 637 | 1190 | 883 | 409 | 1210 | 1470 | 499 | 154 | 48 | 32 | 14 | | 15 | 63 | 154 | 1210 | 856 | 848 | 478 | 1140 | 1260 | 487 | 150 | 48 | 32 | 15 | | 16 | 61 | 142 | 1010 | 675 | 806 | 603 | 1160 | 1260 | 481 | 135 E | 47 | 32 | 16 | | 17 | 60 | 216 | 675 | 572 | 727 | 698 | 1290 | 1360 | 451 | 128 E | 45 | 32 | 17 | | 18 | 56 | 706 | 530 | 519 | 678 | 856 | 1380 | 1310 | 436 | 124 E | 44 | 36 | 18 | | 19 | 51 | 499 * | 460 | 823 | 648 | 878 | 1330 | 1080 | 564 | 128 E | 43 | 38 | 19 | | 20 | 58 | 325 | 433 | 2930 | 629 | 835 | 1330 | 954 | 466 | 126 E | 43 | 37 | 20 | | 21
22
23
24
25 | 58
49
45 *
43 | 254
305
256
252
252 | 361
350
345
682
637 | 4620
2340
1490 *
1040
887 | 582
526
499 E
475 E
451 # | 827
972
1200
1240
1240 | 1450
1770
1900
1340
1070 | 990 *
1060
1150
1060
958 | 397
350
335
303
275 | 120 E
118 E
122 #
124 E
122 E | 42
48
53
56
55 | 39
35
33
33
32 | 21
22
23
24
25 | | 26
27
28
29
30
31 | 40
39
38
56
97
84 | 237
212
193
189
191 | 533
418
361
350
315
287 | 1420
1200
985
823
652
578 | 442
409
451 | 1360
1020 *
1990
2380
2830
2840 | 967
1030
1230
1290
1210 * | 927
865
723
776
865
818 | 243
220 *
206
196
204 | 116 E
110 E
104 E
97 E
92 E
86 E | 55
52
52
50
50
48 | 31
30
30
30
30 | 26
27
28
29
30
31 | | MEAN | 48.2 | 218 | 555 | 1030 | 645 | 902 | 1355 | 1222 | 490 | 150 | 53.8 | 35.1 | MEAN | | MAX. | 137 | 706 | 2690 | 4620 | 1420 | 2840 | 2320 | 2060 | 852 | 235 | 82 E | 46 | MAX. | | MIN. | 21 | 62 | 152 | 269 | 409 | 358 | 967 | 723 | 196 | 86 E | 42 | 30 | MIN. | | AC. FT. | 2867 | 12980 | 34110 | 63440 | 35820 | 55470 | 80600 | 75120 | 29140 | 9249 E | 3310 E | 2089 | AC.FT. | WATER YEAR SUMMARY E - ESTIMATED NR - NO RECORD + - DISCHARGE MEASUREMENT OF | k | - | DISCHARGE M | EAS | UREMEN | NT OR | | | | |---|---|--------------------|-----|--------|-------|------|------|--| | | | OBSERVATION | OF | FLOW | MADE | THIS | DAY. | | | ÷ | _ | E AND * | | | | | | | | MEAN | | MAXIMI | J M | | | | |------------------|-------------------|-------------------|-----|-----------|--------------|---| | DISCHARGE
558 | DISCHARGE
5830 | GAGE HT.
15.11 | MO. | DAY
21 | TIME
0100 | D | | $\overline{}$ | | 1 | | | | - | | | MINIM | JM | | | |-----------|----------------------|-----|-----|------| | DISCHARGE | GAGE HT. 5.73 | MO. | DAY | 71ME | | 21 | | 10 | 1 | 2400 | | TOTAL | _ | |-----------|---| | ACRE FEET | П | | 404,300 | | | | LOCATION | 1 | MA | XIMUM DISCH | ARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | | |----------|-----------|------------------|------------------------|-------------|----------|-------------|-------------|---------------|-----|------|-------|--| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF. | | | | LONGITUDE | M.D.B.&M. | CFS | GAGE HT. | DATE | DISCHAROL | ONLY | FROM | ТО | GAGE | DATUM | | | 40 46 55 | 123 07 40 | SW21 34N 11W | w 35800 27.93 12/22/64 | | 12/22/64 | JAN 57-DATE | JAN 57-DATE | 1957 | | 0.00 | LOCAL | | Station located 1.0 mi. above mouth, 0.6 mi. N of Helena. Stage-discharge relationship affected by ice at times. Drainage area is 151 sq. mi. ## APPENDIX C GROUND WATER MEASUREMENTS #### INTRODUCTION This appendix contains ground water level measurements from 46 wells for the period October 1, 1968, through September 30, 1969. It also contains a table which summarizes the measurements. Wells in the network are continuously reviewed and, when conditions dictate, replacement wells are located and measured. There are nine ground water basins in the North Coastal Region for which data are reported. Two numbering systems are used by the Department to facilitate the processing of water level measurement data. The two systems are the Region and Basin Designation and the State Well Numbering System as described below. The regions are those of the California Regional Water Quality Control Boards whose geographic areas are defined in Section 13200 of the Water Code. That portion of Northern California covered by this report is included in the North Coast Region. A decimal system of the form 0-00.00 has been selected according to geographic regions, ground water basins, and subbasins or subareas as follows: The State Well Numbering System is based on township, range, and section subdivisions of
the Public Land Survey. A section is divided into 40-acre tracts as follows: | D | С | В | A | |---|---|---|---| | E | F | G | Н | | M | L | K | J | | N | P | ବ | R | Sequence numbers in a tract are generally assigned in chronological order. The number of a well, assigned in accordance with this system, is referred to as the State Well Number, as illustrated below: | Township | 16N/
 | IW
T | - | 02 | J | 0 <u>1</u> | |-------------------|----------|---------|---|----|---|------------| | Range | | | | | | | | Section — | | | - | | | | | Tract — | | | _ | | | | | Sequence Number | | | | | | | | Base and Meridian | | | | | | | This number identifies and locates the well. In the example, the well is in Township 16 North, Range 1 West, Tract J of Section 2, located in the Humboldt Base and Meridian. GROUND WATER BASINS, WATER LEVEL MEASUREMENTS TABLE C-1 AVERAGE CHANGE OF GROUND WATER LEVELS AND SUMMARY OF WELL MEASUREMENTS REPORTED | Ground Water Ba | sin | Average
Change
Spring 1968
to | Measuring | Number of
Wells Reported | | | | | | | |---------------------|---------|--|-----------|--|--|--|--|--|--|--| | Name | Number | Spring 1969
in feet | Agency | Monthly Fall Spring
1968-69 1968 1969 | | | | | | | | ORTH COASTAL REGION | | | | | | | | | | | | Smith River Plain . | 1-01.00 | +0.9 | DWR | 6 6 | | | | | | | | Butte Valley | 1-03.00 | +2.3 | DWR | 6 6 | | | | | | | | Shasta Valley | 1-04.00 | -0.6 | DWR | 5 6 | | | | | | | | Scott River Valley | 1-05.00 | +2.5 | DWR | 5 5 | | | | | | | | Mad River Valley | 1-08.00 | +0.8 | DWR | 2 2 | | | | | | | | Eel River Valley | 1-10.00 | -1.3 | DWR | 4 4 | | | | | | | | Round Valley | 1-11.00 | +0.2 | DWR | 6 6 | | | | | | | | Laytonville Valley | 1-12.00 | +2.1 | DWR | 4 4 | | | | | | | | Little Lake Valley | 1-13.00 | 0.0 | DWR | 5 6 | | | | | | | TR - Department of Water Resources #### TABLE C-2 GROUND WATER LEVELS AT WELLS An explanation of the column headings and the code symbols follows: State Well Number - Refer to the explanation presented in the Introduction. Ground Surface Elevation - The numbers in this column are the elevation in feet above mean sea level (USGS datum) of the ground surface at the well. Elevations are usually taken from topographic maps and the accuracy is controlled by topographic standards. Date - The date shown in the column is the date when the depth measurement given in the next column was made. Ground Surface to Water Surface - This is the measured depth in feet from the ground surface to the water surface in the well; some of the depth measurements in the column may be preceded by a number in parentheses to indicate a questionable measurement. The code applicable to these "questionable measurements" is as follows: (1) Pumping - (2) Nearby pump operating - (3) Casing leaking or wet (4) Pumped recently (5) Air or pressure gage measurement (6) Other - (7) Recharge operation at or near well - (8) Oil in casing - (9) Caved or deepened When a measurement was attempted, but could not be obtained, then only a number in parentheses is shown in the column. The code applicable to these "no measurements" is as follows: (1) Pumping (2) Pump house locked (3) Tape hung up (4) Cannot get tape in casing (5) Unable to locate well (6) Well has been destroyed (7) Special - (8) Casing leaking or wet - (9) Temporarily inaccessible - (0) Measurements discontinued The words FLOW and DRY are shown in this column to indicate a flowing or dry well, respectively. A minus sign preceding the number in this column indicates that the static water level in the well is this distance in feet above the ground surface. Water Surface Elevation - This is the elevation in feet above mean sea level (USGS datum) of the water surface in the well. It was derived by subtraction of the depth measurement from the ground surface elevation. Agency Supplying Data - Each of these numbers is the code number for the agency supplying data for that measurement. The Department of Water Resources is the sole agency supplying ground water level measurement data for this report. It has been assigned an agency code number of 5050. TABLE C-2 GROUND WATER LEVELS AT WELLS | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | |----------------------|---|--------------------------------------|---|--|-----------------------------|----------------------|---|-------------------| | SMITH RIVER PLAIN 1 | -01.00 | | | | | MAD RIVER VALLEY 1 | -08.00 | | | 16N OIM-OSJOJ H | 127.0 | 10-17-63
4-08-69 | 21.2
16.5 | 105.8 | 5050
5050 | 06N/01E-06H01 H | 151.0 | 10-15-6
4-09-6 | | 16N OlW-17KOL H | 48.0 | 10-17-68
4-08-69 | 23.2
13.0 | 24.8
35.0 | 5050
5050 | 06n/01e-29p01 h | 25.0 | 10-15-6 | | 17N/01W-02P01 H | 31.0 | 10-17-63
4-08-69 | 21.0 | 10.0
13.5 | 5050
5050 | EEL RIVER VALLEY 1 | -10.00 | | | 17n/01w-03E01 H | 14.0 | 10-17-68
4-08-69 | 12.9 | 1.1 | 5050
5050 | 02N/01W-08B01 H | 34.0 | 10-15-6
4-09-6 | | 17n/01w-15m02 h | 21.0 | 10-17-68 | 16.0 | 5.0
12.0 | 5050
5050 | 03N/01M-18D01 H | 15.0 | 10-15-6
4-09-6 | | 1 N/O1W-26PO1 H | 38.0 | 10-17-68
4-08-69 | 15.4 | 22.6 | 5050
5050 | 03n/01w-34J01 H | 53.0 | 10-15-6
4-09-6 | | RUTTE VALLEY 1-03.0 | n | , 55 5, | \'\' | | ,,,, | 03N/02W-26R01 H | 12.0 | 10-15-6 | | 46N/01E-06NO1 M | 4242.0 | 10-01-68 | 24.7 | 4217.3 | 5050 | TANDO MATTER 1.11 | ^^ | 4-05-0 | | | | 4-07-69 | 20.3 | 4221.7 | 5050 | ROUND VALLEY 1-11. | 1351.0 | 10-16-6 | | 46n/02w-25r02 m | 4256.0 | 10-01-68
4-07-69 | 35.4
24.9 | 4220.6
4231.1 | 5050
5050 | | 1372.00 | 4-10-6 | | 47N/01W-14B01 M | 4234.0 | 10-01-68
4-07-69 | 10.9 | 4223.1
4224.6 | 5050
5050 | 22N/12W-06L03 M | 1370.0 | 10-16-6
4-10-6 | | 47N/OlW-17RO1 M | 4240.0 | 10-01-68 | 10.1 | 4229.9 | 5050
5050 | 22N/13W-12R01 M | 1400.0 | 10-16-6
4-10-6 | | LTN/OIW-19LO1 M | 4238.0 | 10-01-68 | 6.5 | 4231.5
4234.0 | 5050
5050 | 23N/12W-31NO1 M | 1388.0 | 10-16-6
4-10-6 | | 47N/01W-27B01 M | 4233.0 | 10-01-68 | 10.0 | 4223.0
4225.1 | 5050
5050 | 23м/13м-36с03 м | 1410.0 | 10-16-6
4-10-6 | | 48n/01w-26no1 m | 4244.0 | 10-01-68 | (1)
8.0 | 4236.0 | 5050
5050 | 23N/13W-36Q01 M | 1403.0 | 10-16-6
4-10-6 | | SHASTA VALLEY 1-04.0 | \sim | . 0, 0) | 0.0 | 125010 | | LAYTONVILLE VALLEY | 1-12.00 | | | 42N/05W-20JO1 M | 2882.0 | 9 -30- 68 | 2.9 | 2879.1 | 5050 | 21N/14W-30M01 M | 1688.0 | 10-16-6 | | 42N/06W-10J01 M | 2835.0 | 4-07-69
9-30-68 | 5.1 | 2876.9 | 5050 | 21N/15W-01102 M | 1682.0 | 10-16-6 | | ., | | 4-07-69 | 5.0 | 2830.0 | 5050 | 21N/15W+12M02 M | 1630.0 | 4-10-6
10-16-6 | | 43N/06W-22A01 M | 2665.0 | 9-30-68
4-07-69 | (1)
(1) | | 5050
5050 | CAN A JW ACTOC M | 1050.0 | 4-10-6 | | 44n/05w-34но1 м | 2637.0 | 10-01-68
4-07-69 | 24.7
27.8 | 2612.3
2609.2 | 5050
5050 | 21N/15W-24A01 M | 1653.0 | 10-16-6
4-10-6 | | LLN/06w-10F01 M | 2537.0 | 9 - 30-68
4-07-69 | 18.0
25.5 | 2519.0
2511.5 | 5050
5050 | LITTLE LAKE VALLEY | 1-13.00 | | | 45N/05W-29BO1 M | 2635.0 | 10-01-68 | 18.3 | 2616.7 | 5050 | 18N/13W-08L01 M | 1340.0 | 10-16-6
4-10-6 | | | | 4-07-69 | (6) | | 5050 | 18N/13W-16MO1 M | 1380.0 | 10-16-6 | | 45N/06W-19E01 M | 2538.0 | 10-01-68
4-07-69 | 21.9 | 2516.1
2519.5 | 5050
5050 | 18m/13w-17J01 m | 1370.0 | 10-16-6
4-10-6 | | SCOTT RIVER VALLEY | 1-05.00 | | | | | 18N/13W-18E01 M | 1365.0 | 10-16-6 | | 4211/09W-0SA0S W | 2746.0 | 9-30-68
4-07-69 | 12.5
8.0 | 2733.5
2738.0 | 5050
5050 | 18n/13w-20H03 M | 1385.0 | 4-10-6
10-16-6 | | 42N/09W-27NO1 M | 2930.0 | 9-30-68
4-07 - 69 | 8.4 | 2921.6
2927.6 | 5050
5050 | 19N/13W-32F01 M | 1347.0 | 4-10-6 | | 43N/09w-23F01 M | 2728.0 | 9-30-68
4-07-69 | 6.5 | 2721.5 | 5050
5050 | | | 4-10-6 | | 43x/09w-24F01 M | 2735.0 | 9 -30- 68
4 - 07-69 | 13.1 | 2721.9 | 5050
5050 | 19N/13W-32L02 M | 1350.0 | 10-16-6
4-10-6 | | 44n/09%-28PO1 M | 2711.0 | 9-30-68
4-07-69 | 22.0 | 2689.0 | 5050
5050 | | | | | STATE WELL | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |-------------------|---|-----------------------|---|--|-----------------------------| | MAD RIVER VALLEY | 1-08.00 | | | | | | 06м/01Е-06н01 н | 151.0 | 10-15-63
4-09-69 | 11.5
2.8 | 139.5
148.2 | 5050
5050 | | 06N/01E-29P01 H | 25.0 | 10-15-68
4-09-69 | 8.6
6.0 | 16.4
19.0 | 5050
5050 | | EEL RIVER VALLEY | 1-10.00 | | | | | | OSN/OJM-OSBOJ H | 34.0 | 10-15-68
4-09-69 | 21.8 | 12.2
20.3 | 5050
5050 | | 03N/01W-18D01 H | 15.0 | 10-15-68
4-09-69 | 2.7 | 12.3
14.0 | 5050
5050 | | 03n/01w-34J01 н | 53.0 | 10-15-68
4-09-69 | 35.5
30.6 | 17.5
22.4 | 5050
5050 | | 03N/02W-26R01 H | 12.0 | 10-15-68
4-09-69 | 10.5
6.0 | 1.5 | 5050
5050 | | ROUND VALLEY 1-11 | .00 | | | | | | 22N/12W-04B01 M | 1351.0 | 10-16-68
4-10-69 | 14.5 | 1336.5
1344.6 | 5050
5050 | | 22N/12W-06L03 M | 1370.0 | 10-16-68
4-10-69 | 0.3 | 1369.7
1381.5 | 5050
5050 | | 22N/13W-12R01 M | 1400.0 | 10-16-68
4-10-69 | 27:5
5.7 | 1372.5
1394.3 | 5050
5050 | | 23N/12W-31NO1 M | 1388.0 | 10-16-68
4-10-69 | 6.6
-8.5 | 1391.4
1396.5 | 5050
5050 | | 23N/13W-36CO3 M | 1410.0 |
10-16-68
4-10-69 | 27.0
9.7 | 1383.0
1400.3 | 5050
5050 | | 23N/13W-36Q01 M | 1403.0 | 10-16-68
4-10-69 | 18.4 | 1384.6
1402.5 | 5050
5050 | | LAYTONVILLE VALLE | Y 1-12.00 | | | | | | 21N/14W-30M01 M | 1688.0 | 10-16-68
. 4-10-69 | 15.8
3.7 | 1672.2
1684.3 | 5050
5050 | | 21N/15W-01102 M | 1682.0 | 10-16-68
4-10-69 | 18.5
4.8 | 1663.5
1677.2 | 5050
5050 | | 21N/15W+12M02 M | 1630.0 | 10-16-68
4-10-69 | 17.0
5.0 | 1613.0
1625.0 | 5050
5050 | | 21N/15W-24A01 M | 1653.0 | 10-16-68
4-10-69 | 12.5 | 1640.5
1651.3 | 5050
5050 | | LITTLE LAKE VALLE | Y 1-13.00 | | | | | | 18N/13w-08L01 M | 1340.0 | 10-16-68
4-10-69 | 9.2
0.8 | 1330.8
1339.2 | 5050
5050 | | 18N/13W-16MO1 M | 1380.0 | 10-16-68 | (0) | | 5050 | | 18m/13w-17J01 m | 1370.0 | 10-16-68
4-10-69 | 24.4 | 1345.6
1351.6 | 5050
5050 | | 18n/13w-18E01 M | 1365.0 | 10-16-68
4-10-69 | 31.2
25.4 | 1333.8
1339.6 | 5050
5050 | | 18n/13w-20H03 M | 1385.0 | 10-16-68
4-10-69 | (7)
4.0 | 1381.0 | 5050
5050 | | 19N/13W-32F01 M | 1347.0 | 10-16-68
4-10-69 | 6.0 | 1332.5
1341.0 | 5050
5050 | | 19N/13W-32LO2 M | 1350.0 | 10-16-68
4-10-69 | 13.5
8.5 | 1336.5
1341.5 | 5050
5050 | APPENDIX D SURFACE WATER QUALITY ### INTRODUCTION This appendix presents surface water quality data collected during the period from October 1, 1968, through September 30, 1969. The data were collected from 27 stream stations in the North Coastal area. At the time of field sampling, dissolved oxygen, pH, and temperature measurements are made and gage height and time are noted. Comments on local conditions are noted in field books which are available in the files of the Department of Water Resources. The mineral constituents were determined in accordance with methods described in "Standard Methods for the Examination of Water and Waste Water", prepared and published jointly by the American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 12th Edition, 1965. In some cases, the methods used were those presented in the U. S. Geological Survey Water Supply Paper 1454, "Methods for Collection and Analysis of Water Samples", 1960. The analysis for trace elements is in accordance with the U. S. Geological Survey Water-Supply Paper 1540-B, "Concentration Method for the Spectro-Chemical Determination of Minor Elements in Water". Each station in this appendix has been assigned a station number. The numbering system is described in Appendix B, "Surface Water Measurements". A sequential number (formerly employed) follows each station name for reference. #### INDEX TO SAMPLING STATIONS ``` F01300.00 Smith River near Crescent City (3a) F21050.00 Shasta River near Yreka (1a) F25250.00 Scott River near Fort Jones (1b) F31100.00 Klamath River near Klamath (3) F31220.01 Klamath River at Orleans (2c) F31430.00 Klamath River near Seiad Valley (2b) F31470.00 Klamath River above Hamburg Reservoir Site (1c) Klamath River below Iron Gate Dam (1f) F31600.00 F34100.00 Salmon River at Somesbar (2a) F41090.00 Trinity River near Hoopa (4) F41376.00 Trinity River near Burnt Ranch (4b) F41640.00 Trinity River at Lewiston (4a) F51100.00 Mad River near Arcata (6a) F55100.00 Redwood Creek at Orick (3b) F61100.00 Eel River at Scotia (6) F61154.50 Eel River at South Fork (5) F61329.50 Eel River above Outlet Creek (5d) F61350.00 Outlet Creek near Longvale (5b) F63010.00 Eel River, Middle Fork, at Dos Rios (5c) F63050.00 Mill Creek near Covelo (5e) F63105.00 Williams Creek near Covelo (5f) F63120.00 Eel River, Middle Fork, above Black Butte River (5g) F63200.00 Black Butte River near Covelo (5h) F64100.00 Eel River, South Fork, near Miranda (7) F65300.00 Van Duzen River near Bridgeville (5a) F71100.00 Mattole River near Petrolia (7a) F75100.00 Bear River Near Capetown (7b) ``` SURFACE WATER SAMPLING STATIONS ### TABLE D-I SAMPLING STATION DATA AND INDEX North Coastal Area | | Station | Location * | Beginning | Frequency | Analyses | |--|-----------|----------------|-----------|--------------|------------| | Station | Number | | of Record | of Sampling | on Page | | ar River near Capetown (7b) | F75100.00 | 01N/03W-13 H | MAY 1964 | Semiannually | 56, 58 | | ack Butte River near Covelo (5h) | F63200.00 | 23N/11W-28 M | NOV. 1964 | Monthly | 54, 58 | | 1 River above Outlet Creek (5d) | F61329.50 | 21N/13W-31 M | APR. 1958 | Monthly | 51, 57, 58 | | 1 River at Scotia (6) | F61100.00 | 02N/01E-31 H | APR. 1951 | Monthly | 50, 57, 58 | | 1 River at South Fork (5) | F61154.50 | 01S/02E-26 H | APR. 1951 | Monthly | 51, 58 | | 1 River, Middle Fork, above Black Butte River (5g) | F63120.00 | 23N/11W-28 M | NOV. 1964 | Monthly | 54, 58 | | 1 River, Middle Fork, at Dos Rios (5c) | F63010.00 | 21N/13W-06 M | APR. 1958 | Monthly | 52, 57, 58 | | 1 River, South Fork, near Miranda (7) | F64100.00 | 03s/04E-30 н | APR. 1951 | Monthly | 55, 57, 59 | | amath River above Hamburg Reservoir Site (lc) | F31470.00 | 46N/10W-14 M | DEC. 1958 | Bimonthly | 47, 59 | | amath River at Orleans (2c) | F31220.01 | 11N/06E-31 H | JAN. 1964 | Monthly | 46, 57, 59 | | amath River below Iron Gate Dam (lf) | F31600.00 | 47N/05W-17 M | DEC. 1961 | Monthly | 48, 57, 59 | | amath River near Klamath (3) | F31100.00 | 13N/01E-24 H | APR. 1951 | Monthly | 46, 57, 59 | | amath River near Seiad Valley (2b) | F31430.00 | 46N/12W-03 M | DEC. 1958 | Monthly | 47, 57, 59 | | d River near Arcata (6a) | F51100.00 | 06N/01E-15 H | NOV. 1958 | Monthly | 49, 57, 59 | | ttole River at Petrolia (7a) | F71100.00 | 02S/02W-11 H | JAN. 1959 | Semiannually | 56, 60 | | ll Creek near Covelo (5e) | F63050.00 | 22N/12W-22 M | FEB. 1965 | Monthly | 53, 60 | | tlet Creek near Longvale (5b) | F61350.00 | 20N/14W-01 M | MAY 1958 | Monthly | 52, 60 | | dwood Creek at Orick (3b) | F55100.00 | lon/ole-o4 H | NOV. 1958 | Monthly | 50, 60 | | lmon River at Somesbar (2a) | F34100.00 | lln/06E-02 H | NOV. 1958 | Semiannually | 48, 60 | | ott River near Fort Jones (lb) | F25250.00 | 44N/10W-29 M | DEC. 1958 | Bimonthly | 46, 60 | | asta River near Yreka (la) | F21050.00 | 46N/O7W-24 M | DEC. 1958 | Monthly | 45, 60 | | ith River near Crescent City (3a) | F01300.00 | 16N/O1E-10 H | APR. 1951 | Monthly | 45, 60 | | inity River near Hoops (4) | F41090.00 | 08N/05E-31 H | APR. 1951 | Monthly | 48, 57, 61 | | inity River at Lewiston (4a) | F41640.00 | 33N/08E-17 M | APR. 1951 | Bimonthly | 49, 61 | | inity River near Burnt Ranch (4b) | F41376.00 | 05N/07E-19 H | APR. 1958 | Bimonthly | 49, 61 | | n Duzen River near Bridgeville (5a) | F65300.00 | 01N/02E-12 H | APR. 1958 | Monthly | 55, 61 | | lliams Creek near Covelo (5f) | F63105.00 | 23N/12W-24 M | NOV. 1964 | Monthly | 53, 61 | | Tites Creek hear Covero ()1) | 103107.00 | 2),1/22N 4- 11 | 101. 2701 | | 73, 01 | ⁻ H = Humboldt Base and Meridian M = Mount Diablo Base and Meridian #### TABLE D-2 MINERAL ANALYSES OF SURFACE WATER An explanation of column headings follows: The LAB and SAMPLER agency codes are as follows: 5000 - U. S. Geological Survey 5050 - California Department of Water Resources TIME - Pacific Standard Time on a 24-hour clock. - The instantaneous gage height in feet above an established datum. - The instantaneous discharge in cubic feet per second (cfs). "E" indicates the value has been estimated. DO - The dissolved oxygen content in milligrams per liter. SAT - The percent saturation. TEMP - Water temperature in degrees Fahrenheit at the time of field sampling. Water temperature in degrees Celsius is computed from degrees Fahrenheit. PH LAB & FIELD - Measure of acidity or alkalinity of water. EC LAB - The electrical conductance in micromhos at 25° Celsius. - The electrical conductance in micromhos at temperature when sampled. TDS - Gravimetric determination of total dissolved solids at 180° Celsius. SUM - Total dissolved solids determined by addition of analyzed constituents. TH - Total hardness. NCH - Non-carbonate hardness. #### The MINERAL CONSTITUENTS are as follows: B - Boron K - Potassium CA - Calcium MG - Magnesium - Chloride - Sodium CL NA NO3 CO_F3 - Carbonate - Nitrate SIO Fluoride - Silica Bicarbonate - Sulfate #### TABLE D-2 | | LAU | G.H.
∷ હ | OO
SAT | | EMP | PH
LA3
FLO | EC
L≜⊎
FLU | CA | MG | NSTITUE
Na | к | PER
CO3 | LIGRAMS
LIEQUIV
CENT RE | ALENTS
ACTANO
504 | PER L | NOR | | | 8445 PE | R LITE
TOS
SUM | R
TH
NCH | |------------------|--------------|----------------|------------|----------|--------|------------------|------------------|------------------|------------------|------------------|--------|-----------------|-------------------------------|-------------------------|------------------|------------|----|-------|---------|----------------------|----------------| | | | | | | 00.0 | | | | | ER NEAR | | | | | | | | | | | | | 10/01/68 | 5050
5050 | 6.63
305 | 10.3 | 60 | F | 7.8 | 161 | | | 2.A
.12 | | 0.0 | 98
1.44
89 | | 2.9
.0H | •• | | 0.0 | | | 81
9 | | 11/12/68 | | 17.36
18009 | 12.8 | | | 7.8
7.7 | 101 | | | 1.7 | | 0.0 | 58
.95 | | 2.2 | | | 0.0 | | | 49 | | 12/03/68 | | 11.57 | 13.5 | | FC | 8.1 | 105 | | •• | 1.8 | | 0.0 | 61 | | 2.2 | | | 9.0 | | | 63
13 | | 01/21/69 | | 18.69
2190) | 13.3 | | FC | 7.8
7.3 | 84 | | | 2.4
•10 | | 0.0 | 48
•79
94 | •• | 1.7 | | | 0.0 | | | 44 | | 02/04/69 | 5050
5050 | 12.12
5400 | 13.5 | 43 | FC | 7.9
7.3 | 89 | | | 1.9 | | 0.0 | 50
.82
92 | | 2.1 | | | 0.0 | | •• | 43 | | 03/03/69 | | 11.87
4490 | 13.1 | 46
B | | 7.3
7.9 | 89 | | | 1.4 | | 0.0 | 48
•79
88 | | 1.9 | | | 0.0 | | | 47
8 | | 04/08/69
0755 | 5050
5050 |
11.20
354, | 13.4 | | F
C | 7.8
7.3 | 90 | | | 1.4 | | 0.0 | 52
•85
94 | •• | 1.5 | | | 0.0 | •• | | 45
3 | | 05/13/69
0640 | | 11.14
3680 | 12.6 | | | 7.6
7.3 | 70 | 4.7
.23
30 | 5.7
.47
62 | 1.2 | 0.2 | 0.0 | 39
.64
82 | 4.0
.08
10 | 2.0 | 0•0 | | 0.0 | •• | 38
37 | 35
3 | | 06/10/69
0745 | | | 11.7 | | | 7.8
7.6 | 101 | | | 1.4 | | 0.0 | 58
•95
94 | •• | 3.2 | | | 0.0 | | •• | 49 | | 07/15/69
0640 | 5050
5050 | 7.11
427 | 9.5 | | FC | 7.9
7.8 | 134 | | | 2.2
.10
7 | | 0.0 | 79
1.30
97 | | 2.4 | | | 0 • 0 | •• | | 69 | | 08/05/69
0700 | 5050
5050 | 6.74 | 9.6 | | FC | 8.2
7.8 | 146 | •• | | 2.2
.10
6 | | 0.0 | 84
1.38
94 | | 2.6 | | | 0.0 | ~ • | | 73 | | 09/09/69
0655 | | 6.38
216 | | | | 8.2
7.5 | | 12
•60
35 | 12
•99
58 | 2.2
•10
6 | 0.3 | 0.0 | 89
1•46
89 | 4.9
•10
6 | 3.0
.08
5 | 0 • 0 | | 0.0 | | 75
78 | 79
6 | | | | | F2 | 105 | 0.00 |) | | Sr | ASTA I | RIVER N | EAR YR | EKA (1 | (A) | | | | | | | | | | 10/09/68
0820 | 5050
5050 | 3.08 | 10.8 | 48 | FC | 8.5 | 627 | | | 50
2.18
34 | | 14
•47
7 | 335
5.49
87 | | .92
.92 | | | 0.5 | | | 251
0 | | 11/13/68 | 5050
5050 | 3.42
194 | 12.7 | 48 | FC | 8.6 | 530 | | | 41
1.78
33 | | 14
•47
8 | 269
4•41
83 | | 26
.73 | •- | | 0.5 | | | 202 | | 12/10/68 | 5050
5050 | 3.48 | 11.6 | 48 | F
C | 8.5 | 497 | | | 38
1.65
33 | | 6.0 | 266
4.36
87 | | 22
.62 | | | 0.5 | | | 189 | | 01/20/69 | 5050
5050 | 5.53
1290 | 12.4 | 39 | F
C | 8.1 | 392 | | | 26
1.13
28 | | 0.0 | 205
3.36
85 | | 15
•42
10 | | | 0.3 | | | 152 | | 02/17/69 | 5050
5050 | 3.82 | 12.1 | 43 | FC | 8.4 | 516 | | | 28 | | 5.0
.17 | 281
4.61
89 | | 19
•54
10 | •• | | 0.3 | | | 0 0 | | 03/10/69 | 5050
5050 | 3.58
231 | 12.5 | 45 | FC | 8.3 | 513 | | | 30
1.31
25 | | 0.0 | 291
4.77
92 | | 19
•54
10 | •• | | 0.4 | | | 216 | | 04/08/69
1240 | 5050
5050 | 3.84
309 | | 53
12 | | 8.3 | 496 | | | 31
1.35
27 | •• | 0.0 | 285
4.67
94 | | 18
•51
10 | •• | •• | 0.2 | | | 207 | | 05/13/69
0715 | 5050
5050 | 3.52
2n6 | | 64
18 | | 8.1 | 505 | 29
1.45
26 | 32
2.63
47 | 34
1.48
26 | 3.5 | 0.0 | 294
4.82
87 | 8.1 | 20
.56
10 | 0.A
.01 | •• | 0.5 | | 307
272 | 0 0 | | 06/09/69
1350 | 5050
5050 | 3.16
89 | 9.2 | 65 | | 8.9 | 554 | | •• | 38
1.65
29 | | 0.0 | 336
5.51
99 | | .62
11 | | | 0.4 | •• | | 240 | | 07/07/69
1250 | 5050
5050 | 2.97
67 | 9.5
111 | | | 8.6 | 558 | | | 4.1
.18
3 | | 2.0 | 333
5.46
97 | | 24
• 68
12 | •• | | 0.4 | | •• | 236 | | 08/12/69
1245 | 5050
5050 | 2.68 | 9.8 | | | 8.5 | 639 | • | | 50
2.18
34 | | 8.0
.27
4 | 373
6.12
95 | | 30
.85
13 | | | 0.6 | | •• | 270 | | 09/15/69
1330 | 5050
5050 | 2.90
53 | 9.9 | 67 | F
C | 8.7 | 617 | 42
2.10
28 | 37
3.04
41 | 50
2.18
29 | 4.2 | .67
9 | 338
5.54
77 | 5.8 | 28
.79
11 | 3.A
.0A | | 0.6 | •• | 326
357 | 256
0 | | | OATE
TIME | Lad
SAMPLE | G.∺.
⊱ u | DO
SAT | Ţ! | EMP | PH
LAB
FLO | EC
LAB
FLU | MINER
CA | AL CON | STITUE | NTS IN | MILL | .leQU1V | PER L
ALENTS
ACTANCI
504 | PER L | | F | ILL I GR | AMS PE | R LITE
TOS
SUM | R
TH
NCH | |---|------------------|----------------|----------------|------------|--------------|--------|------------------|------------------|------------------|------------------|------------------|--------|--------|-------------------|-----------------------------------|----------------------|-------|-------|----------|--------|----------------------|----------------| | | | | | F | 2 52! | 50.00 | , | | sco | TT RIV | ER NEA | R FORT | JONE5 | (18) | | | | | | | | | | | 10/09/6 | 5.151
5.151 | | 11.8 | | FC | 8.2 | 300 | | •• | 5.8
.25
8 | | 0.0 | 179
2.94
98 | •- | 5.0 | | •- | 0.0 | •• | | 157 | | | 11/14/68
0755 | 8 5050
5950 | | 10.7 | | F
C | 8.3 | 196 | | | 3.4
•15
7 | | 0.0 | 117
1.92
97 | •• | 2.7 | | •• | 0.0 | | •• | 102 | | | 01/20/69
1635 | 5.50
5.50 | | 12.0 | 37 | F
C | 8.0 | 151 | | •- | 7.7 | | 0.0 | 1.38
91 | •• | 2.0 | | | 0.0 | | | 86
17 | | | 03/10/69
1120 | 5050
5050 | | 12.7
98 | 40 | F
C | 8.0
7.7 | 234 | •• | •• | 3.1
.13
5 | | 0.0 | 140
2.30
98 | | 2.0 | •• | ₩ 00 | 0.0 | | | 121 | | | 05/12/69
1235 | 5 150
5 050 | | 10.5 | 54
12 | F
C | 7.4 | 85 | 7.8 | 5.2
.43
48 | 1.4 | 0.4 | 0.0 | .79
91 | 1.2 | 1.6 | .01 | •• | 0.0 | | 60
42 | 41 2 | | | 07/08/69
0730 | 5:15n | | 9.8
97 | 59
15 | F
C | 8.3 | 558 | | | 3.7
.16
7 | | 0 • 0 | 134
2.20
96 | | 2.7
.08
3 | •• | | 0.0 | | •• | 123 | | | 09/16/69
0925 | 5.150
5050 | | 10.5 | 57 | F
C | 8.3
7.9 | 276 | 31
1.55
53 | 13
1.97
37 | 6.6
•29
10 | 0.4 | 0.0 | 157
2.57
89 | 5.4
•11
4 | 6.5 | 1 • 0 | 40 | 0.0 | •• | 142 | 130 | | | | | | F3 | 110 | 0.00 | | | К | LAMATH | PIVER | NEAR | KLAMAT | H (3) | | | | | | | | | | | 10/01/68 | 5050
5050 | | 9.2
96 | 63 | | 7.9 | 234 | 21
1.)5
43 | 10
-82
34 | 12
•52
•21 | 2.0 | 0.0 | 121
1.98
80 | 16
•33
13 | 5.2
.15
6 | ۶.0 | 0.2 | 0.1 | 17 | 143 | 94 | | | 1030 | | 8.77
16500 | | 12 | FC | 7.6 | 137 | 13
•65
46 | 6.3
.52
37 | 5.1
.22
15 | 1.0 | 0.0 | 67
1.10
79 | 10
•21
15 | .06 | 1.0 | 0 • 1 | 0.0 | 13 | 85 | 58 | | | 0855
0855 | | 6.97
11400 | 12.5 | 45 | F
C | 8.2 | 166 | 16
•80
46 | 7.6
.62
35 | 6.9
.30
17 | 1.0 | 0.0 | 82
1.34
77 | 14
•29
17 | 3.5
•10
6 | 1.0 | 0.2 | 0.0 | 16 | 106 | 72 | | | 1540 | | 17.25
71300 | 102 | 43
6 | FC | 8.2 | 123 | 14
.70
56 | 5.0
•41
33 | 3.1
.13
10 | .02 | 0.0 | 68
1.12
85 | 7.0
•15
11 | .03 | 1.1 | 0 • 1 | •02 | 13 | 78 | 56 | | (| 02/03/69
1425 | | 13.11
34600 | 12.8 | 7 | F
C | 7.9 | 155 | 16
.80
50 | 7.1
.58
36 | 4.8
•21
13 | 0.9 | 0 • 0 | 81
1.33
84 | 9.0
•19
12 | 1.5 | 1.4 | 0 • 0 | 0.0 | 16 | 86
96 | 69 | | • | 1500 | 5050 | 26300 | 107 | | С | 7.4 | 163 | 17
•85
49 | 7.4
.61
35 | 5.9
•26
15 | 0.9 | 0.0 | 88
1.44
84 | •21
•21 | 1.3
.04
2 | 1.4 | 0.1 | 0.0 | 17 | 104 | 73 | | | 0930 | 5050 | 14.58
38000 | 107 | 9 | С | 7.7 | 157 | 15
•75
45 | 7.0
.58
35 | 6.6
•29
18 | .03 | 0 • 0 | 1.31
83 | 8.0
•17
11 | 2 · 1
· 06
· 4 | .03 | 0.1 | 0.0 | 17 | 98 | 66 | | | 0915
0915 | 5050 | 45400 | 112 | 13 | С | 7.3 | 91 | 9.3
.46
51 | 4.0
.33
36 | 2.3
•10
11 | 0.6 | 0.0 | 47
•77
89 | 3.0
.06
7 | S
8.0 | .02 | 0 • 1 | 0.0 | 11 | 55 | 40 | | | 0930 | 5050 | 13000 | | 15 | С | 7.8 | 112 | .55
50 | 5.0
.41
37 | 3.0
•13
12 | 0.7 | 0.0 | .97
.88 | 5.0
•10
9 | .03 | 0 • 1 | 0.1 | €0. | 13 | 68 | 0 | | | 0910 | 5050 | 7.17
4200 | 98 | 2'n | С | 7.9 | 166 | .85
51 | 7.1
.58
35 | 5.1
.22
13 | 1.1 | 0.0 | 87
1.43
87 | 7.0 | .07 | 0 • 0 | 0+1 | • 05 | 13 | 96 | 72 | | | 08/05/69
0810 | 5350 | 3210 | | St. | С | 8.9 | 197 | 19
•95
47 | 8.2
.67
33 | 8.1
.35
17 | 1.5 | 0.0 | 101
1.66
85 | 9.0
•19
10 | 3.4
•10
5 | 0.0 | 0.1 | | 13 | 112 | 81 | | (| 09/09/69
0905 | | 5450
6•00 | 96 | 2n | | 7.8 | 241 | 21
1.05
+1 | 35 | 15
•65
25 | 2.2 | 0.0 | 114
1.87
75 | .46
18 | 5.8
.16
6 | 0 • 0 | 0.1 | .10 | 18 | 142 | 94 | | | | | | F3 | 122 | 0.01 | | | KL | AMATH. | RIVER | AT OHL | EANS | (20) | | | | | | | | | | | 1430 | | 6.37 | 11.0 | | | 7.9
7.6 | 169 | W 40 | | 9.4
•41
24 | | 0.0 | 86
1•41
83 | | 3.9
.11
6 | •• | | 0.1 | •• | | 66 | | | 12/02/68
1515 | | 5.35
4320 | 13.3 | 44 | | 8.0 | 186 | •• | | 11
•48
25 | | 0.0 | 93
1.53
82 | •• | 4.3
.12
6 | •• | | 0.0 | | | 80 | | | 1000 | | 9.35
1251' | 13.8 | - | | 7.5 | 176 | •• | | 8.5
.37
21 | | 0.0 | 91
1.49
84 | •• | 3·1
·09
5 | | | 0.0 | | | 8 8 | | (| 3/03/69
1115 | | 4.67
9631 | | | | 7.4 | 193 | | | 9.3
.40
20 | | 0.0 | 97
1.59
82 | | 3.4 | •• | | 0.0 | | •• | 87
8 | ## MINERAL ANALYSIS OF SURFACE WATER MILLIGRAMS PER LITER | | | | | | CMD | РН | EC | MINER | AL CON | SIITUE | NT5 IN | MILL | | ALENTS | PER L | TIER | per l | ILLIGR | AMS PE | | | |------------------|---------|----------------|------------|----------|-------|------------|-------------|------------------|------------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|-----------------|-------|--------|------------|------------|-----------| | TIME | 54MPLER | G.H. | SAT | 1 (| EMP | FLO | FLU | CA | MG | NA | К | CO3 | | 504 | CL | FON | | | | | TH
VCH | | | | | F3 | 12 | 20.01 | | | K | LAMATH | RIVER | AT OUL | | | | | CONTINU | | | | | | | 04/07/69
1225 | | 11.75
19200 | 13.2 | | | 7.6
7.7 | 182 | | | 10 | | 0.0 | 85
1.79
76 | 97 gs | 2.7 | | ** | 0.0 | | | 68 | | 05/12/69 | | 14.04 | 12.6 | | | 7.4
7.3 | 80 | 7.5 | 4.2
.35
41 | 2.4 | 1.0 | 0.0 | 43
.71
87 | 3.3 | 1.2 | 0.4 | | 0.0 | | 44 | 36
1 | | 06/09/69 | | 7.89
9800 | 11.0 | | | 7.7 | 100 | | •• | 3.6
•16 | | 0.0 | 54
.89 | | 1.7 | | | 0.0 | ~ ~ | | 43 | | 07/14/69 | | 3.65
2750 | | | FC | 7.8
8.0 | 159 | •• | | 6.6 | •• | 0.0 | 90
1.48
93 | | 3.1 | | | 0.0 | | | 7 0
0 | | 08/04/69
1210 | | 2.88
1920 | 10.3 | | | 8.2 | 194 | | ** | 11
•48
24 | •• | 0.0 | 101
1.66
85 | | 4.5 | | | 0.1 | | | 76
0 | | 09/08/69 | | 2.72
1376 | 10.0 | | |
7.7
8.1 | 25 5 | 19
• 95
36 | 9.1
.75
29 | 20
.87
33 | 2.5 | 0.0 | 112
1.84
72 | 26
•54
21 | 6.2
.17
7 | 0.0 | | 0.1 | | 141
138 | 85
0 | | | | | F3 | 143 | 30.00 | | | KLA | MATH R | IVER NE | FAR SEI | AD VA | LLEY (| 281 | | | | | | | | | 11/13/68 | | 2090 | 12.2 | 49 | F | 8.3 | 234 | •• | •• | 17 | | 0.0 | 117 | | 6.9 | 4 • n
• 0 6 | | 0.1 | | | 82
0 | | 12/10/68 | | 4040 | 11.4 | 46
8 | | 7.9 | 226 | •• | | 16
• 70 | •• | 0.0 | 108
1.77
78 | | 6.0 | 4.0 | ~- | 0.1 | | | 86 | | 01/20/69
1510 | | 664C | 13.0 | | | 8.1 | 216 | | •• | 13
•57
26 | •• | 0.0 | 112
1.84
84 | | 5.7
.16
7 | 3.6 | | 0.0 | | | 99 | | 02/17/69 | | 6050 | 12.4 | | | 8.1 | 236 | •• | | 14
•61
25 | | 0.0 | 120
1.97
83 | | 4.9 | 4.5 | | 0.0 | | | 98 | | 03/10/69 | | 3440 | 13.0 | 43 | | 7.5
7.9 | 254 | | •• | 13
•57
22 | | 0.0 | 132
2.16
85 | | 5.0
.14
5 | 3.7 | | 0.1 | on eq | | 105 | | 04/08/69 | | 11000 | 11.4 | | | 7.5 | 211 | | | 13
•57
27 | | | 93
1.53
72 | | 3.4 | 3.6 | | 0.0 | | | 78
2 | | 05/12/69
1345 | | 9400 | 10.8 | | | 7.5 | 122 | 10
•50
40 | 6.3
.52
41 | 5.1
.22
17 | 0.7 | 0.0 | 64
1.05
80 | 6.4
•13
10 | 4.1
.12
9 | 0.9 | | 0.0 | •• | 80
65 | 51 | | 06/09/69 | | 3980 | 10.3 | | | 7.8
7.7 | 150 | | ** | 7.0
.30
20 | •• | 0.0 | 80
1.31
87 | | 3.8
.11
7 | 0.A
.01 | | 0.1 | | •• | 61 | | 07/07/69
1530 | | 1560 | 10.0 | | | 8.3 | 202 | | •• | 11
•48
23 | | 0.0 | 107
1.75
86 | | 4.5
.13
6 | .01 | | 0.0 | | •• | 85
0 | | 08/12/69
1415 | | 1300 | 10.2 | | | 8.4 | 272 | | | .96
35 | # 4 | 1.0 | 118
1.94
71 | | 6.8 | 1.2 | | 0.1 | | | 92 | | 09/16/69
0805 | | 1530 | 9.0 | 62
17 | | 9.1
7.8 | 265 | 17
.d5
30 | 8.6
.71
25 | 27
1•17
42 | 2.7
.07
3 | 3.0
.10
4 | 112
1.84
69 | 24
•50
19 | 6.9
.19
7 | 2.2 | | 0.1 | | 148
146 | 78 | | | | | F3 | 147 | 0.00 | | , | CLAMAT | H RIVE | R ABOVE | USPAH | RG RE | SERVOIR | 8 517E | (1C) | | | | | | | | 11/13/68 | | 1544 | 12.4 | | | 8.3
8.0 | 254 | •• | •• | ?2
•96
37 | | 0.0 | 125
2.05 | ** | 7.7
.22 | 5.7
.08 | 77 | 0.1 | | | 85
0 | | 01/20/69 | | 4670 | 12.2 | | | 8.1 | 255 | | | 19
• 83
32 | | 0.0 | 127 | | 7.4
.21 | 5.A
.09 | •• | 0.1 | | | 98 | | 03/10/69
1435 | | 1981 | 13.0 | | | 7.5 | 271 | | | 19
.83
30 | ~- | 0.0 | 130
2.13
78 | | 6.2 | 4.A
.OH
? | •• | 0.1 | | | 103 | | 05/12/69
1425 | | 2066 | 10.0 | | | 7.5
8.4 | 180 | 14
.70
38 | 7.0
.58
31 | 12
•52
28 | 1.9 | 0.0 | 84
1.38
75 | 13
.27
15 | 6.0
.17 | 1.4 | | 0.1 | •• | 110 | 64 | | 07/07/69 | | 824 | 9.8
115 | | | 8.3 | 204 | | | 15
•65
31 | | 0.0 | 104
1.71
83 | | 5.1
.14
6 | 0.7 | | 0.1 | ~ - | | 78
0 | | 09/16/69 | | 1373 | 9.2 | | | 7.5 | 265 | 17
.85
31 | 5.7
.55
2n | 28
1.22
45 | 3.6
.09
3 | 0.0 | 113
1.85
72 | 26
•54
21 | 6.8
.19
7 | 0.1 | | 0.1 | | 172
144 | 70 | ## MINERAL ANALYSIS OF SURFACE WATER MILLIGRAMS PER LITER | | | | | | | Рн | EC | MINER | AL CON | STITUE | NTS IN | MILL | | ALENTS | PER L | | М | ILLIGA | AMS PE | | | |------------------|----------------|---------------|------------|----------|--------|------------|-----|------------------|------------------|------------------|-----------------|-------|-------------------|------------------|-----------------|-----------------------|----|--------|--------|------------|----------| | | SAMPLE | | SAT | T | EMP | FLO | FLD | CA | MG | NA | к | CO3 | HCO3 | SO4 | CL | E NO3 | ۶ | 8 | \$102 | TUS
SUM | NCH | | | | | e 3 | 3 14 | 00.00 | 0 | | KI AMA1 | ra oru | ED AFI | Ow IROn | GATE | DAM (| 161 | | | | | | | | | 10/09/6H
0920 | 5050
5150 | 1341 | 8.1 | | F | 8.1
7.4 | 259 | | | 25
1.09
42 | | 0.0 | 112 | | 5.4 | 3+1
+05 | | 0.1 | | | 85
0 | | 11/13/68 | 5350
5050 | 1354 | 9•2
83 | 51
11 | | 8.1 | 209 | | | 20
.87
41 | | 0.0 | 95
1.56
74 | | 4.8 | 6.1 | | 0.1 | | | 78
0 | | 12/10/68 | 5 (50
5 (50 | 1430 | 9.9 | 44 | F
C | 7.9
7.4 | 262 | | | 26
1.13
43 | | 0.0 | 111
1.82
69 | | 6.1 | 7.0
.11
4 | | 0.1 | | | 77 | | 01/20/69
1325 | 5350
5950 | 3340 | 12.1 | | F
C | 7.5 | 170 | | *** | 14
•61
35 | | 0.0 | 82
1.34
78 | | 3.8
.11
6 | 3.2 | | 0.0 | | | 64 | | 02/17/69
1230 | 5050
5050 | 3340 | 11.6
88 | | F
C | 7.5
7.6 | 218 | | | 20
.87
39 | | 0.0 | 95
1.56
71 | | 4.9
.14
6 | 6.5 | | 0.0 | | | 74 | | 03/10/69
1320 | 5350
5650 | 175r | 12.3 | 41 | | 7.5 | 240 | | | 19
•83
34 | | 0.0 | 99
1.62
67 | | 4.7
.13
5 | 6 • 0
• 1 0
• 4 | | 0.0 | | •- | 79 | | 04/08/69
1530 | 5050
5050 | 7010 | 11.8 | 51
11 | | 7.5 | 198 | ** | | 16
•70
35 | ** | 0.0 | 76
1.25
63 | | 3.4
.10
5 | 5.0
.08
4 | ~~ | 0.0 | | | 62 | | 05/12/69
1545 | 5050
5050 | 186n | 10.2 | 17 | | 7.4 | 178 | .60
34 | 5.8
.48
27 | 15
•65
36 | 2.3 | 0.0 | 72
1.18
66 | 21
• 44
25 | 5.0
.14
8 | .03 | | 0.0 | | 133
98 | 0 | | 06/09/69
1430 | 5050
5050 | 925 | 118 | 67 | | 7.9
8.5 | 168 | | | 15
•65
38 | | 0.0 | 75
1.23
73 | | 5.0
.14
8 | 0.1 | •• | 0.1 | | | 51 | | 1330 | 5050 | 757 | 11.5 | 21 | С | 8.4 | 174 | | | 14
•61
35 | | 1.0 | 73
1.20
68 | | 3.6
.10
5 | 1.7 | | 0.0 | | •• | 62 | | 08/12/69
1600 | 5050
5050 | 1020 | 9.3 | 77 | F
C | 8.2 | 279 | | | 28
1.22
43 | | 0.0 | 110
1.80
64 | | 6.2 | .03 | | 0.2 | | •• | 0 82 | | 09/15/69
1410 | 5050
5050 | 1326 | 9.3 | 50 | F
C | 8.3 | 247 | .70
28 | 9.2
.76
30 | .96
38 | 3.3
.08
3 | 0.0 | 99
1.62
68 | •56
23 | 7.5 | 0 • 1 | | 0.1 | •• | 158 | 73 | | | | | F3 | 410 | 0.00 | | | SALM | ON RI | VER AT | SOMESE | AR (2 | A) | | | * | | | | | | | 05/12/69
1325 | | | 12.7 | | | 7.4 | 56 | 8.0
.40
67 | 1.7
.14
23 | 1.0 | 0.B
.02
3 | 0.0 | 30
•49
89 | 1.3 | 0.9 | 0.7 | | 0.0 | | 32
29 | 27 | | 09/08/69
1315 | 5050
5050 | 2.n5
195 | 9.8 | 7n
21 | | 7.9 | 145 | 20
1.00
67 | 4.4
.36
24 | 2.9
•13
9 | 0.5 | 0.0 | 79
1.30
88 | 4.9
•10
7 | 2.4
.07
5 | 0 • 0 | | 0.0 | | 78
74 | 68 | | | | | F4 | 109 | 0.00 |) | | TRI | NITY | RIVER | NEAR HO | OPA (| 4) | | | | | | | | | | 11/11/68 | 5050
5050 | 14.85
1580 | | | | 8.0
7.6 | 164 | | | 3.5
•15
9 | | 0.0 | 80
1.31
79 | ** | 3.8
•11
6 | 0.0 | | 0.0 | | | 77
12 | | 12/02/68 | 5050
5050 | 15.70
1830 | 12.6 | 45 | F
C | 8.1 | 188 | •• | | 4.0
.17
9 | | 0.0 | 93
1.53
81 | •• | 3.7
.10
5 | 0.7 | | 0.0 | | •• | 90
14 | | 02/03/69
0845 | 5050
5050 | 19.95
940° | 12.4 | 43 | F
C | 7.3 | 175 | | | 2.7 | •• | 0.0 | 93
1.53
87 | ** | 2.0
.06
3 | 0.2 | | 0.0 | | | 93
17 | | 03/03/69 | 5,50
5,50 | 19.73
889a | 13.1 | 45 | | 7.7
7.7 | 173 | | | 2.6 | | 0.0 | 96
1.57
90 | | 1.9 | 0.1 | | 0.0 | | | 92
14 | | 04/07/69
1120 | | 20.57 | 12.1 | 48 | F
C | 7.9 | 139 | | | 2.3
•10
7 | | 0.0 | 78
1.28
92 | •• | 1.5 | 0.3 | | 0.0 | | •• | 67 | | 05/12/69 | | 21.27 | 11.2 | | | 7.7
7.3 | 92 | .60
62 | 3.4
.28
29 | 1.6
.07
7 | 0.6 | 0.0 | 51
•84
87 | 4.B
•10
10 | 1.1 | 0.0 | | 0.0 | | 52
48 | 2 | | 06/09/69
1030 | 5,50
5,50 | | 10.2 | | | 7.6
7.7 | 120 | | | 2.3
.10
8 | | 0.0 | 65
1.07
89 | | 2.5 | 0.1 | •• | 0.0 | | | 55
2 | | 07/14/69
1115 | 5050
5050 | 14.52
1035 | 9.5 | 69
21 | FC | 5.1
7.8 | 167 | | | 3.2
.14
.8 | | 0.0 | 92
1.51
90 | | 3.0 | 0 • 1 | | 0.0 | | •• | 80
5 | | 1040 | 5 150
5050 | 13.68
510 | 9.5
106 | 69 | | 8.1
7.9 | 198 | | | 4.2
•18
9 | •• | 0.0 | 98
1.61
81 | | 3.1 | 0.1 | | 0.0 | •• | | 93
13 | | DATE
TIME S | LAU | G.H.
> ∪ | 00
SAT | | EMP | PH
EAJ
ELJ | EC
LAH
FLU | MI VERA | AL CON | ISTITUE
NA | NTS IN | MILI
PERO
CO3 | LIGRAMS
LIEQUIVA
CENT REA
HCO3 | ALENTS
ACTANCI
504 | PER L
E VALU | | F | ILLIGRA | SIO2 | R LITER
TOS
SUM | TH
NCH | |-----------------|----------------|---------------|-----------|----------|--------|------------------|------------------|-------------------|------------------|------------------|------------|---------------------|---|--------------------------|------------------|--------|-----|---------|------|-----------------------|-------------| | | | | F4 | 109 | 90.00 |) | | TRI | LNITY | RIVER | NEAR H | DOPA | (4) | | | CONTIN | JED | | | | | | 9/08/69 | 5.15°
5.15° | 13.25
340 | | 73
23 | | 7.7
7.7 | 215 | 28
1.40
62 | 7.8
.64
28 | 4.4
•19
8 | 0.6 | 0.0 | 112
1.84
85 | 9.9 | 4.3
.12
6 | 0.0 | •• | 0.0 | | 94
110 | 102 | | | | | F4 | 137 | 76.00 |) | | TRIN | ITY RI | VEH NE | AR BUH | NT RAI | NCH (48) | 1 | | | | | | | | | 1/11/68 | 5750
5750 | 641 | 10.9 | 54
12 | FC | 7.8
7.5 | 108 | | | 3.0
.13
12 | | 0.0 | 54
.89
82 | | 3.5 | 0.1 | | 0.0 | •• | ** | 49 | | 1/20/69 | 5.)51
5050 | 8000 | 12.7 | 42 | F
C | 7.9
7.9 | 127 | | ** | 2.8 | 4 4 | 0.0 | 70
1.15
90 | ⇔ ⊕ | 2.2 | 0.4 | ** | 0.0 | •• | | 64 | | 3/03/69
0935 | 5050
5050 | 2539 | 13.0 | 44 | FC | 7.7
7.5 | 180 | | | 2.9 | ** | 0.0 | 101 | | 2.3 | 0 • 1 | | 0.0 | | ** | 95
12 | | 5/12/69 | 5050
5050 | 514) | 12.0 | | FC | 7.5
7.3 | 71 | 9.0
.45 | 2.6 | 1.3 | 0.2 | 0.0 | 39
•64
91 | 0.6 | 1.7 | 0.0 | ** | 0.0 | | 32
35 | 33 | | 7/14/69
1000 | 5050
5050 | 645 | 9.5 | 67
19 | F
C | 7.7
8.0 | 121 | *** | •- | 2.9
 •• | 0.0 | 64
1.05
86 | | 3.0 | 0.0 | ** | 0.0 | •• | | 50 | | 9/08/69 | 5050
5050 | 239 | | 68 | FC | 8.1 | 157 | 17
•85
51 | 7.4
.61
37 | 4.6 | 0.4 | 0.0 | 84
1.38
86 | 3.3 | 5.3 | 0.0 | ** | 0.0 | •• | 76
79 | 73
4 | | | | | - | 144 | 0.00 | | | TOI | INTTY | RIVER | AT IFW | ISTON | (44) | | | | | | | | | | 1/11/68 | 5050
5050 | 3.35
259 | 10.8 | | | 7.8
7.3 | 87 | •• | | 7.2
•31 | | 0.0 | 50
.82
94 | | 8.4
.24
27 | 0.1 | | 0.1 | •• | | 41 | | 1/20/69
0930 | 505n
5050 | 3.76
177 | 12.2 | 41
5 | F | 7.8
7.3 | 98 | | | 3.1
.13 | •• | 0.0 | 54
•89
90 | Ø 40 | 1.6 | 0.4 | | 0.0 | | •• | 48 | | 3/03/69 | 5050
5050 | 3.01
164 | 12.2 | 43
6 | F
C | 7.7
7.3 | 106 | | •• | 3.2
•14
13 | | 0.0 | 58
•95
89 | | 1.6 | 0 • 1 | •• | 0.0 | | ** | 57
10 | | 5/12/69
0840 | 535a
535a | 3.07
174 | 11.4 | 56
13 | | 7.6
7.4 | 96 | 5.5
.27
.27 | 7.4
.61
62 | 2.4 | 0.2 | 0.0 | 54
•89
•85 | 4.1 | 2.5 | 0 • 1 | | 0.0 | •• | 42
49 | 44 | | 7/14/69
0815 | 5050
5050 | 3.0 5 | 11.1 | 49 | F
C | 7.7
7.3 | 103 | ~ ~ | ** | 2.5 | | 0.0 | 52
•85
82 | | 1.7 | 0.1 | | 0.0 | •• | •• | 45 | | 9/08/69
0810 | 5151
5150 | 3.23
223 | 17.6 | 47 | | 7.6
7.3 | 93 | 5.8
.29
29 | 7.4
.61 | 2.2 | 0 • 1 | 0.0 | 53
.87
.94 | 0.6 | 1.8 | 0 • 0 | | 0.0 | ** | 62 | 45 | | | | | | | | | | | | RIVER | AT ARC | ATA 11 | 5.A.) | | | | | | | | | | 0/02/68
0710 | 5050
5050 | 3.54 | 9.5 | | | 8.0
7.8 | 213 | •• | | 4.9 | | 0.0 | 110
1.80
84 | | 80.
80. | | | 0.0 | •• | | 106 | | 1/12/68 | 5050
5050 | | 11.3 | | | 7.2
7.3 | 117 | | | 4.5
.20 | | 0.0 | 46
•75
64 | | 4.7
.13 | | ** | 0.1 | •• | •• | 48 | | 2/03/68
1110 | 5.250
5.250 | | 12.8 | 46
8 | FC | 8.1
7.9 | 130 | | | 4.2 | | 0.0 | 60
.98
75 | | 3.6 | | | 0.0 | •• | •• | 68 | | 1/20/69 | 5150
5050 | 15.37
1960 | | 46 | FC | 7.8
8.1 | 100 | | | 3.3
.14
14 | | 0.0 | 51
.84
84 | | 2.2 | ** | | 0.0 | •• | •• | 58
16 | | 2/03/69
1240 | 5150
5550 | | 12.9 | 45 | | 7.6
7.3 | 96 | | | 3.6 | | 0.0 | 45
•74 | | 3.0 | *- | | 0.0 | •• | •• | 49
12 | | 3/03/69
1345 | 5.751
5.750 | н.51
2940 | 12.9 | | FC | 7.7
7.3 | 93 | •• | | 2.9 | •• | 0.0 | 77
44
•72 | | 2.8 | | | 0.0 | •- | •• | 43 | | 4/07/69
1445 | 5150
5350 | 7.52
175) | 12.2 | | | 7.6
7.3 | 103 | | ** | 2.9 | | 0.0 | 51
.84 | 60 (g) | 2.1 | 40 | | 0.0 | •• | •• | 42 | | 5/13/69
1050 | 515n
505n | 5.71
645 | 11-1 | 57 | | 7.7
7.3 | 108 | 15
.75 | 2.4 | 2.7 | 1.3 | 0.0 | 61
54
.89 | 5.6 | 2.5 | 0.7 | | 0.1 | •• | 54
57 | 49 | | 6/10/69
1120 | 5.51
5050 | 4.54 | 10.7 | | | 7.9
7.6 | 15% | 56
 | 50 | 3.6
•16 | 3 | 0.0 | 82
1 • 34
84 | 11 | 3.5 | | | 0.0 | | •• | 73 6 | | | LAB
SAMPLE | G.H.
R Q | 00
SAT | | EMP | PH
LAB
FLD | EC
LAB
FLD | MINE | RAL COM | STITUE | NTS IN | PERI
CO3 | CENT RE | ALENTS
ACTANO
SO4 | PER L | FCN | F | | 445 P6 | R LITE | R
TH
NCH | |------------------|---------------|----------------|-----------|-------------|------|------------------|------------------|------------------|---------------------|------------------|---------|-------------|-------------------|-------------------------|------------------|------------|-------|-----|--------|----------|----------------| | | | | F! | 5 11 | 00.0 | 0 | | | MAD | RIVER | AT ARC | ATA (| 5A) | | | CONTIN | IJΕĐ | | | | | | 07/15/69
1250 | 5050
5050 | | 8.6 | 73
23 | | 8.3 | 207 | •• | | 4.5 | | 0.0 | 110
1.80
86 | | 2.7 | | | 0.0 | | ~- | 102 | | 08/05/69
1025 | 5050
5050 | | 10.1 | | | 8.2 | 194 | | | 4.4
.19
9 | •• | 0.0 | 102
1.67
86 | | 2.5 | | | 0.0 | | | 96
13 | | 09/09/69
1050 | 5050
5050 | | 10.1 | | | 7.9 | 206 | 32
1.60
73 | 4.4
.36
17 | 4.6
.20
9 | 0.8 | 0.0 | 109
1.79
85 | 11
•23
11 | 3.0 | 0 • n | | 0.0 | | 100 | 98 | | | | | FS | 5 510 | 0.00 | 0 | | RE | Dwood | CREEK | AT ORI | CK (3: | 3) | | | | | | | | | | 10/01/68 | 5050
5050 | | 11.3 | | | 7.8
7.3 | 178 | ** | | 5.7
•25 | | 0.0 | 73
1.20
67 | | 6.0 | | | 0.0 | | | 90 | | 11/12/68 | 5050
5050 | | 11.6 | | | 7.1
8.1 | 104 | •• | | 3.7
.16
15 | | 0.0 | .66
63 | | 4.0
.11
10 | | •• | 0.1 | | | 43 | | 12/03/68 | 5050
5050 | | 12.7 | | FC | 7.8
7.5 | 99 | | | 3.6
•16
16 | | 0.0 | 42
.69
69 | | 3.2 | | | 0.0 | | | 48 | | 01/20/69 | 5050
5050 | 10.86
805¢ | 12.2 | | FC | 7.3
8.0 | 76 | | | 2.6
•11
14 | | 0.0 | 33
•54
71 | | 2.6 | | | 0.0 | | | 36
9 | | 02/03/69 | 5050
5050 | | 12.9 | 44 | | 7.7
7.3 | 74 | | •- | 3.0
.13
17 | | 0.0 | 31
•51
68 | | 3.7
.10
13 | | | 0.0 | | | 32
7 | | 03/03/69
1435 | 5050
5050 | 8.36
2630 | 12.8 | 47 8 | | 7.1
7.2 | 76 | | | 2.5
•11
14 | | 0.0 | .52
.68 | | 3.1
.09
11 | •• | | 0.0 | | | 33 | | 04/07/69
1555 | 5050
5050 | 6.97
970 | 11.4 | | | 7.7
7.3 | 91 | •• | •• | 2.7
.12
13 | | 0.0 | 38
•62
68 | | 2.7
.08
8 | •• | | 0.0 | | | 36
5 | | 05/13/69
1000 | 5050
5050 | | 11.1 | | | 7.8
7.1 | 95 | .70
73 | 1 · 4
• 12
13 | 2.7
•12
13 | 0.6 | 0.0 | 43
•71
72 | 8.4
•17
17 | 3.5
.10
10 | 0 • 0 | •• | 0.0 | | 54
52 | 41 | | 06/10/69
1020 | 5050
5050 | 5.04
171 | 10.8 | | | 7.7
7.3 | 124 | •- | •• | 3.4
•15
12 | | 0.0 | 56
• 92
74 | •• | 4.7
.13
10 | •• | | 0.0 | | | 53 | | 07/15/69
1040 | 5050
5050 | 5.04
9n | 9.9 | | | 8.1 | 155 | | •• | 4.4
•19
12 | | 0.0 | 77
1.26
81 | | 4.6 | | | 0.0 | | •- | 71 | | 08/05/69
0915 | 5050
5050 | 4.71
42 | 10.4 | | FC | 8.1 | 158 | •• | | 4.9
•21
13 | •• | 0.0 | 73
1.20
75 | | 5.5
.16
10 | | | 0.0 | ~ ~ | | 75
15 | | 09/09/69
1000 | 5050
5050 | 4.08 | 10.0 | | | 8.0
7.1 | 159 | 1.10
68 | 3.2
.26
16 | 5.3
.23
14 | 0.6 | 0.0 | 71
1.16
76 | 9.5
.20
13 | 6.2
.17
11 | 0.0 | •• | 0.0 | | 77
82 | 68 | | | | | F6 | 110 | C.00 | | | | EEL | RIVER | AT SCOT | IA (6 |) | | | | | | | | | | 10/02/68 | 5050
5050 | | 11.0 | | | 8.2 | 343 | 43
2.15
58 | 13
1.07
29 | 10
•44
12 | 1.6 | 0.0 | 179
2.94
80 | 27
•56
15 | 5.7
.16
4 | 0.? | 0.2 | .13 | 9.3 | 198 | 161 | | 11/13/68 1230 | 5050
5050 | 10.77 | 10.8 | 54 | | 7.9 | 242 | 29
1.45
57 | 8.5
.70
27 | 8.6
.37
15 | 1.3 | 0.0 | 111
1.82
72 | 26
•54
21 | 5.4
.15
6 | 0.7 | 0.3 | .12 | 9.2 | 144 | 108 | | 12/03/68
1230 | 5050
5050 | 11.58 | 12.9 | 47
8 | FC | 8.2 | 191 | 22
1.10
55 | 6.9
.57
29 | 6.9
•30
15 | 1.0 | 0.0 | 89
1.46
74 | 18
• 37
19 | 4.3
.12
6 | 0.A
.01 | 0.2 | .08 | 9.2 | 113 | 84 | | 01/21/69 | | 36.22 | | 49 | | 8.1 | 99 | .60
58 | 2.9 | 3.8
.17
16 | .03 | 0.0 | 55
•90
85 | 6.0
•12
11 | 1.2 | 0.A
.01 | 0.1 | .02 | 8.8 | 64 | 0 | | 02/04/69 | 5050
5050 | 16.30
1810n | 102 | 45 | | 7.5 | 142 | 17
.85
56 | 5.3
.44
29 | 4.6
•20
13 | 0.9 | 0.0 | 73
1.20
82 | 10
•21
14 | 1.5 | 0.A
.01 | 9.0 | .00 | 12 | 90
88 | 64 | | 03/04/69 | | 15.66
25000 | 12.0 | | | 7.3
7.5 | 152 | 15
.75
47 | 7.1
.58
36 | 5.2
.23
14 | 1.7 | 0.0 | 77
1.26
79 | 12
•25
16 | 2.6 | 1.3 | 0.2 | .00 | 12 | 95 | 66 | | 04/08/69
1315 | 5050
5050 | 13.09
7800 | 11.4 | 58
14 | | 7.8
7.7 | 155 | 19
.95
57 | 5.8
.48
29 | 4.8
.21
13 | 1.1 | 0.0 | 80
1.31
82 | 9.0
•19
12 | 2.4 | 2.1 | 0.1 | .00 | 10 | 94 | 72
7 | | 05/13/69
1705 | 5050
5050 | 12.52 | 111 | | | 7.9
7.6 | 123 | 17
.H5
53 | 4.1
.34
25 | 3.3
.14
10 | 0.6 | 0.0 | 69
1.13
84 | 7.0
•15
11 | .03 | 1.6 | 0 - 1 | .00 | 8.7 | 77 | 60 | | OATE
TIME | LAH | G.H. | 00
5AT | | EMP | PH
LAB
FLD | EC
LAB
FLO | CA | | | ENTS IN | MILI
PER | LIGRAMS
LIEQUIV
CENT RE
HCO3 | ALENTS | PER L | E | | ILLIGR | | TOS | R
TH
NCH | |------------------------|--------------|----------------|--------------|----------|--------|------------------|------------------|------------------|------------------|------------------|---------|-------------|---------------------------------------|-----------------|--------------------|-------------------|-------|--------|------|------------|----------------| | | | | F | 6 11 | 00.0 | 0 | | | EEL | RIVER | AT SCO | TIA (| 51 | | | CONTIN | UED | | | | | | 26/10/69
1515 | 5v50
5050 | 10.00 | 10.9 | | | 8.1 | 191 | 1.20 | 6.4
.53
27 | 4.7
.20 | 1.0 | 0.0 | 98
1.61
84 | 12
•25
13 | 2.2 | 0 4 0 | 0.1 | .11 | 21.4 | 107 | 86
6 | |)7/15/69
1600 | 5050
5050 | 9.03 | 9.4 | | | 8.2 | 281 | 37
1.d5
61 | 10
.92
27 | 7.5
.33 | 1.4 | 0.0 | 149 | 18 | 3.8 | 20n
3.22
52 | 0.0 | 50.0 | 7.2 | 408 | 134 | |)8/05/69
1310 | 5050
5050 | | 10.2 | | | 8.4 | 314 | 40
2.00
50 | 11
•99
27 | 8.5
.37 | 1.5 | 2.0 | 164
2.69
84 | 15
•31
10 | 4.4 | 0 • 0 | 0.2 | .16 | 9.3 | 172 | 145 | |)9/09/69
1615 | 5u50
5u50 | 110 | 12.1 | | | 8,4 | 301 | 36
1.80
54 | 13
1.07
32 | 9.6
.42
13 | 1.4 | 1.0 | 154
2,53
79 | 23
•48
15 | 6.5
.18
6 | 0 • 1 | 0 • 1 | .13 | 8.1 | 162 | 144 | | | | | F6 | 5 11 | 54.5 | 0 | | | EEL | RIVER | AT SOU | TH FOR | RK (51 | | | | | | | | | | 10/02/68 | 5050
5050 | 38 | 8.9 | | F | 8.0 | 370 | ** *** | | 9.2 | •• | 0.0 | 158 | | 7.9 | | | 0.2 | •• | | 168 | | .1/13/68 | | 1150 | 10.8 | 53 | F | 7.9 | 266 | 00 to | | 8.2 | •• | 0.0 | 70
121
1.98 | | 6.5 | | | 0.2 | | •• | 124 | | 2/04/68 | | | 12.5 | 44 | F |
8.1 | 198 | •• | ~~ | 6.0 | | 0.0 | 74
93
1.53 | | 3.7
.10 | | | 0.1 | | | 99 | | 11/22/69 | | 66500 | 12.7 | | | 7.9 | 110 | •• | | 3.0
•13 | | 0.0 | 60 | | 1.6 | *- | | 0.0 | | | 65
16 | | 12/04/69 | | 12800 | 12.7 | 44 | | 8.1 | 146 | *** | | 4.0 | •• | 0.0 | 72
1.18 | | 2.0 | | ** | 0.0 | | | 70
11 | | 13/04/69 | | 11000 | 12.6 | | | 7.5
7.6 | 140 | | •• | 3.4 | •• | 0.0 | 72
1.18
84 | | 1.9 | *- | | 0.0 | | | 74
15 | | 4/08/69 | | 5450 | 11.5 | 54 | FC | 8.0 | 142 | •• | | 3.7
.16 | •• | 0.0 | 73
1.20
84 | | 1.7 | *** | | 0.0 | | •• | 64 | | 5/13/69
1635 | | 5730 | 10.6 | | | 7.8
7.7 | 114 | 16
.80
67 | 2.9 | 2.7 | 1.0 | 0.0 | 60
•98
88 | 4.3 | 1.6 | 0 • 1 | | 0.0 | | 63
58 | 52
3 | | 6/11/69
0830 | 5050
5050 | 860 | 9.9 | | FC | 8.1 | 167 | •• | | 3.4
•15
8 | •• | 0.0 | 85
1.39
83 | | 2.7 | 10 to | | 0.0 | | •• | 80
11 | | 7/15/69
1630 | 5050
5050 | 165 | 9 · 1
105 | 72 | | 8.3 | 260 | | | 6.1
.27
10 | ** | 0.0 | 136
2.23
85 | | 3.7
.10
3 | | | 0.0 | | | 128 | | 8/05/69
1345 | 5050
5050 | 55 | 9.6 | 7n
21 | F
C | 8.3 | 302 | ** | o- es | 6.8 | •• | 0.0 | 156
2.56
84 | - | 4 · 3
· 12
3 | •• | | 0 • 1 | •• | •• | 145
17 | | 9/10/69
0720 | 5050
5050 | 35 | 9.2 | | FC | 8.0 | 312 | 2.20 | 10
.82
24 | 8.6
.37
11 | 1.2 | 0.0 | 154
2.53
77 | 29
•60
19 | 5.3
.15
5 | 0.1 | | 0.1 | | 162
174 | 151
25 | | | | | F6 | 137 | 29.50 |) | | | EEL RI | VER A8 | OVE DU | TLET C | REEK (| 50) | | | | | | | | | 0/03/68
1050 | 5050
5050 | 2.71 | 8.7 | | F | 8.0 | 268 | ** | •• | 11
•48
17 | | 0.0 | 113
1.85
69 | | 7.3
.21 | F.0 | | 0.5 | | •- | 118 26 | | 1/14/68 | 5050
5050 | 2.98
37 | 11.2 | 48 | FC | 8.2 | 291 | •• | •• | 12
•52
17 | •• | 0.0 | 136
2.23
76 | | 8.2 | 0.0 | | 0.7 | •• | | 130 | | 2/04/68
1535 | 5150
5050 | | 12.8 | 44 | F
C | 8.3 | 229 | ** | | 9.4 | •• | 0.0 | 111
1.82
79 | | 5.8 | 0 • 1 | | 0.4 | •• | •• | 110 | | 1/22/69 | | 15.05
16100 | 12.7 | 44 | FC | 7.7
7.7 | 88 | •• | | 2.8 | | 0.0 | 48
•79
89 | | 1.6 | 0.6 | | 0.0 | •• | •• | 48 | | 2/05/69
0725 | | 8.12
400, | 12.5 | 42 | F
C | 7.7
7.3 | 107 | •• | •• | 3.6
.16 | •• | 0.0 | 55
•90
84 | | 2.0 | 0.2 | •• | 0.0 | •• | •• | 58
13 | | 3/05/69
1315 | | 6.42 | 12.4 | 48 | FC | 7.4
7.6 | 120 | | *** | 3.2 | •• | 0.0 | 64
1.05
87 | | 1.7 | 0.1 | | 0.0 | | *- | 55
3 | | 4/09/69
0925 | | 5.13 | 11.4 | | FC | 7.9
7.8 | 129 | Ф m | •• | 3.6
•16
12 | •• | 0.0 | 66
1.08
83 | ** | 2.4 | 0 • 1 | •• | 0.0 | •• | ** | 56 | | DATE
TIME | LAH
SAMPLE | Ğ.Н.
ы ј | 00
54 T | | ЕМР | PH
LAB
FLD | EC
LAB
FLO | | MG | STITUE | ENTS I | PERO
CO3 | LIEQUIN
CENT RE | | PER L
E VALU | | F | 8 | 8445 PE | R LITE
TOS
SUM | TH | |------------------|--------------------|---------------|------------|----------|------|------------------|------------------|------------------|------------------|------------------|---------|-----------------|--------------------|-----------------|------------------|---------|----|-----|---------|----------------------|-----------| | | | | | 6 13 | 29.5 | 0 | | | EFL PI | VER AL | SOVE OF | | | (50) | | CONTINI | | | | | | | 05/14/69 | 5050
5050 | | 10.5 | 58
14 | | 7.9 | 137 | 17
• 45
59 | 4.7
.39
27 | 4.0
.17
12 | 0.8 | 0.0 | 76
1.25
92 | 3.1
.05 | 1.6 | 0.1 | ** | 0.2 | •• | 82
69 | 62 | | 06/11/69 | 5050
5050 | | 123 | | | 8.5
8.3 | 215 | | | 6.4
.28
13 | •• | 3.0
.10
4 | 1.72
80 | •• | 4.1
.12
5 | 0.0 | | 0.3 | | •• | 100 | | 07/16/69 | 5050
5050 | | 9.1 | | | 8.2 | 240 | | | 8.9
.39
16 | •• | 0.0 | 137
2.25
93 | | 4.5 | 0.1 | •• | 0.3 | | •• | 107 | | 08/06/69
6910 | 5e50
5e50 | | 9.2 | | | 8.3 | 248 | | •• | 9.6
.42
16 | | 0.0 | 117
1.92
77 | | 5.4 | 0.7 | •• | 0.4 | | | 109 | | 09/10/69
1055 | 5050
5050 | | 8.5 | | | 8.2 | 256 | 30
1.50
56 | 8.3
.68
25 | 12
•52
19 | 0.1 | 0.0 | 116
1.90
74 | 25
•52
20 | 5.6
.16
6 | 0.0 | •• | 0.4 | •• | 124
138 | 109 | | | | | F | 6 13 | 50.0 | 0 | | | OUTLET | CREEK | NEAR | LONGVA | ALE (58 | 1) | | | | | | | | | 10/03/68
1115 | 5050
5050 | | 9.5 | | | 8.1 | 358 | | | .83
23 | | 0.0 | 146
2.39
66 | | 30
.85
23 | •• | | 2.9 | | •• | 138
19 | | 11/14/68
0845 | 5050
5050 | | 96 | | FC | 8.2 | 236 | •• | •• | 12
•52
22 | | 0.0 | 109
1.79
75 | •• | 11
•31
13 | | | 0.9 | | | 100 | | 12/04/68
1605 | 5050
5050 | | 13.1 | | | 7.9
8.0 | 154 | •• | •• | 7.4
•32
20 | | 0.0 | 71
1.16
75 | | 6.4
.18
11 | •• | | 0.3 | | •• | 84
26 | | 01/22/69
1135 | | 396 | 11.8 | | FC | 7.5
7.1 | 58 | •• | •• | 2.8 | | 0.0 | 30
•49
84 | ** | 2.2
.06 | •• | | 0.0 | •• | | 25 | | 02/05/69 | 5 J 5 0
5 0 5 0 | | 12.6 | | F | 7.4
7.1 | 69 | ** | •• | 3.0
.13
18 | •• | 0.0 | 34
•56
81 | •• | 2.4 | •• | | 0.0 | | •• | 30 | | 03/05/69
1250 | 5050
5050 | | 11.8 | | | 7.2
7.3 | 89 | | •• | 3.3
•14
15 | •• | 0.0 | 48
•79
88 | •• | 2.5
.07
7 | 1** | | 0.0 | | •• | 38 | | 04/09/69
0845 | 5050
5050 | | 11.1 | | | 7.8
7.5 | 133 | •• | | 5.7
.25
18 | •• | 0.0 | 67
1.10
82 | •• | 3.5
.10
7 | •• | | 0.2 | •• | •- | 55 | | 05/14/69
0745 | 5,50
5,50 | | 10.0 | | | 8.0
7.8 | 196 | 21
1.05
51 | 7.4
.61
3n | 8.2
.36
18 | 1.1 | 0.0 | 101
1.66
83 | 6.9
•14
7 | 7.5
.21
10 | 0.0 | | 0.6 | •• | 102 | 83 | | 06/11/69
1150 | 5050
5050 | | 10.4 | | | 8.3 | 237 | •• | •• | 10
•44
18 | | 0.0 | 120
1.97
83 | | 9.9
.28
11 | •• | •• | 0.9 | •• | •• | 102 | | 07/16/69
1015 | 5050
5050 | 2.1 | | 74
23 | | 8.2 | 274 | | | 13
•57
20 | | 0.0 | 137
2.25
82 | | .37
13 | •• | •- | 1.2 | •• | | 118 | | 08/06/69
0845 | 5050
5050 | | 3.8 | | | 8.2 | 294 | •• | | 15
.65
22 | | 0.0 | 145
2.38
80 | | 18
•51
17 | •• | •- | 1.5 | •• | ** | 123 | | 09/10/69
1035 | 5050
5050 | | 106 | | | 7.9
8.1 | 315 | 31
1.55
47 | .90
27 | 18
.78
24 | 1.8 | 0.0 | 145
2.38
73 | 8.9
•19
6 | .68
21 | 0 • 0 | •• | 2.0 | | 155
168 | 122 | | | | | F6 | 5 301 | 10.0 | 0 | | EEL RI | VER. M | IOOLE | FORK. | AT DOS | RIOS | (5C) | | | | | | | | | 10/03/68 | 5150
5050 | | 10.6 | | | 8.0 | 376 | | | 12
•52
13 | | 0.0 | 120
1.97
52 | *** | 16
•45
11 | 0.0 | | 0.2 | | | 161 | | 11/14/68 | 5050
5050 | 7.18
272 | 12.1 | 46 | | 7.7 | 219 | | | 6.3
.27 | | 0.0 | 94
1.54
70 | | 4.5 | 0.1 | | 0.1 | | | 107 | | 12/04/68 | 5050
5050 | | 13.3 | 41 | | 8.1 | 213 | | | 5.8 | •• | 0.0 | 97
1.59
74 | •• | 4.0
.11
5 | ۶.0 | •• | 0.0 | | •• | 104 25 | | 01/22/69 | | 20000 | 13.3 | 42 | | 7.9 | 118 | | | 3.0
.13 | | 0.0 | 60
•98
83 | •• | 1.6 | 0.4 | •• | 0.0 | | •• | 61 | | 02/05/69 | | | 13.3 | | | 8.0
7.7 | 149 | | | 3.8 | •• | 0.0 | 75
1 • 23
82 | | 2.1 | 0.7 | | 0.0 | | | 77
16 | | 03/05/69
1345 | | 11.65
24J0 | 13-1 | | | 7.7
7.8 | 178 | •• | 40 | 3.9 | | 0.0 | 74
1.21
67 | | 1.9 | 0.1 | | 2 | •• | | 87
27 | | | LAB
SAMPLE~ | G.m. | DO
SAT | | MP | PH
LAB
FLD | EC
LAn
FLU | C-4 | MG | NA | К | MILL
PERC
CO3 | TEQUIVE NC03 | ACTANCE
SO4 | PER L | | F | LLIGRA | 5102 | TD5
SUM | TH
NCH | |------------------|----------------|-------------|------------|-----|--------|------------------|------------------|------------------|------------------|------------------|--------|---------------------|-------------------|-----------------|-----------------|----------|-----|--------|--------------|------------|-----------| | | | | F6 | 301 | 6.00 | | | EEL RI | VFR. M | IOOLE | FORK. | 4T DOS | RIOS | (5C) | | CONTINUE | E0 | | | | | | 04/09/69 0955 | 5 150
5 150 | 11.89 | 12.3 | | F
C | 7.9 | 134 | •• | | 2.9 | | 0.0 | 69
1.13
84 | | 1.4 | 0.5 | •• | 0.0 | •• | | 62 | | 05/14/69
0845 | 5050
5050 | 12.09 | 12.3 | | | 7.7 | 88 | 12
.50
67 | 2.4
.2n
22 | 1.8 | 0.9 | 0.0 | 48
.79
95 | 0.5 | 1.2 | 0 • 1 | *** | 0.1 | •• | 60 | 40 | | 06/11/69 | 5050
5050 | 9.53
472 | 9.8 | | | 8.2
7.8 | 142 | •• | | 2.8
.12
8 | •• | 0.0 | 70
1.15
80 | | 1.8 | 0 • 0 | | 0.1 | 60 60 | | 67 | | 07/16/69 | 5350
5050 | 7.92 | 9.0
107 | | | 8.2 | 242 | •• | | 5.9
.26
10 | | 0.0 | 137
2.25
92 | | 4.7
.13
5 | 0 • 1 | | 0.0 | •• | •• | 128
16 | | 08/06/69 | 5050
5050 | 7.92
41 | 9.6 | | _ | 8.3 | 283 | •• | | 7.9
.34
12 | | 0.0 | 123
2.02
71 | •• | 7.8
.22
7 | 0.1 | •• | 0.1 | •• | •• | 134 | | 09/10/69 | 5150
5050 | 7,52
22 | 10.6 | | FC | 8.2 | 306 | 39
1.95
60 | 10 | 10
•44
14 | 1.2 | 0.0 | 110
1.80
58 | 46
•96
31 | 12
•34
11 | 0.0 | | 0.2 | | 159
172 | 139 | | | | | F6 | 305 | 50.00 | | | | MILL | CREEK | NEAR | COVELO | (5E) | | | | | | | | | | 12/04/68 | 5050
5050 | 7.6 | 12.6 | | | 8.2 | 233 | •• | | 8.0
•35
15 | | 0.0 | 118
1.94
83 | •• | 4.9
•14
6 | 0.3 | •• | 0.0 | •• | | 120 | | 01/22/69 | 5051
5050 | 1200 | 11.9 | | F
C | 7.8
7.3 | 116 | •• | | 4.3
.19
16 | | 0.0 | 59
•97
83 | | 2.1 | 0.9 | •• | 0.0 | •• | | 59
11 | | 02/05/69 | 5050
5050 | 657 | 12.1 | 4" | F
C | 7.8
7.3 | 139 | •• | | 4.2
.18 | | 0.0 | 73
1.20
86 | •• | 2.4 | 0.3 | | 0.0 | •• | •• | 70
10 | | 03/05/69 | 5050
5050 | 396 | 11.4 | 49 | | 7.5
7.6 | 159 | •• | | 4.4 | •• | 0.0 | 88
1.44
90 | •• | 2.2 | 0.2 | | 0.0 | •• | | 83
11 | | 04/09/69 | 5050
5050 | 95 | 11.2 | | F
C | 7.8 | 215 | •• | | 5.9 | | 0.0 | 118
1.94
90 | •• | 3.2
| 0.4 | | 0.0 | •• | | 100 | | 05/14/69 | 5050
5050 | 7.5 | 9.9 | | | 6.3
7.9 | 304 | 32
1.60
48 | 16
1.32
40 | 8.2
.36 | 1.8 | 0.0 | 184
3.02
91 | 8.9
•19
6 | 3.4 | 0.4 | | 0.1 | | 160
161 | 148 | | 06/11/69 | 5050
5050 | 0.1 | 8.5 | | | 8.2 | 353 | •• | | 10
•44
12 | •• | 0.0 | 209
3.43
97 | •• | 5.0
.14
3 | 0.0 | | 0.1 | •• | | 176
5 | | | | | F6 | 310 | 5.00 | | | W | ILLIAM | 5 CREE | K NEAR | COVEL | 0 (5F) | | | | | | | | | | 10/03/68 | 5050
5150 | | 9.7 | | | 8.1 | 310 | •• | | 4.9
•21
6 | | 0.0 | 169
2.77
89 | •• | 2.1
.06 | 0.0 | | 0.0 | •• | | 162
24 | | 11/14/68 | 5959
5950 | | 12.2 | 44 | | 8.1
7.9 | 175 | •• | | 3.1
.13
7 | | 0.0 | 92
1.51
86 | | 1.6 | 0 • 1 | | 0.0 | | •• | 86 | | 12/04/68 | 5J50
5050 | | 12.7 | | F
C | 8.2 | 156 | •• | | 3.0
.13
8 | | 0.0 | 80
1.31
83 | •• | 1.5 | 0 • 1 | | 0.0 | | | 88 | | 01/22/69 | 5050
5050 | 5.05
830 | 12.6 | | FC | 7.6
7.7 | 74 | •• | •• | 2.0 | •• | 0.0 | 38
.62
83 | •• | 1.2 | ۶.0 | •• | 0.0 | •• | | 38
7 | | 02/05/69 | 5350
5350 | 3.74
352 | 12.7 | | | 7.8
7.3 | 94 | •• | •• | 2.3
.10 | | 0.0 | .85
90 | | 1.4 | 0.1 | | 0.0 | •• | | 2 | | 03/05/69
1450 | 5150
5150 | 3.27 | 11.6 | | FC | 7.5
8.4 | 109 | •• | | 2.2 | | 0.0 | 55
.90
82 | | 1.2 | 0 • 1 | | 0.0 | | | 50
5 | | 04/09/69
1210 | 5050
5050 | 3.08 | 11.8 | | | 7.7
7.5 | 101 | •• | | 2.1
.19 | •• | 0.0 | 50
.82
81 | •• | 0.8 | 0.0 | •• | 0.0 | •• | | 46 | | 05/14/69
1055 | 5050
5050 | | 11.4 | | | 7.8
7.5 | 91 | 9.6
.48
49 | 4.9 | 1.5 | 1.0 | 0.0 | 51
•84
95 | 0.5
.01
1 | 1.1 | 0.1 | | | •• | 56
44 | 2 | | 06/11/69
1430 | 51150
5250 | | 9.7 | | | 5.0 | 133 | •• | | 2.1 | | 0.0 | 70
1.15
86 | | 0.8 | 0.1 | | 0.0 | | | 65
8 | | 07/15/69 | 5051
5051 | | 8.8
115 | | | B.4
B.4 | 209 | •• | | 3.6
•16
7 | | 1.0 | 120
1.97
94 | •• | 1.9 | 0.1 | •• | 0.0 | | | 110 | | | LAU
SAMPLER | G.H. | 00
SAT | TE | MP | PH
LAB
FLD | EC
LAB
FLD | | MG | STITUE | NT5 IN | MILL | IGRAMS
IEQUIV
ENT RE
HCO3 | ALENTS
ACTANCE | PER L | | | ILL I GRA | | LITE
TOS
SUM | R
TH
VCH | |------------------|----------------------|--------------|--------------|-------------|--------|------------------|------------------|------------------|------------------|------------------|--------|--------|------------------------------------|-------------------|-------------------|-----------------|-----|-----------|-------|--------------------|----------------| | | | | | 210 | 5.00 | | | | | COEE | NEAR | CUVEL | .0 (5F) | | | CONTINU | ED. | | | | | | 08/06/69
1050 | 5050
5050 | | 9.8 | 76 | F | 8.3 | 248 | | == | 3.9
•17 | == | 0.0 | 142
2.33
93 | | 2.0 | 0.3 | | 0.0 | | | 127 | | 09/10/69
1245 | 5050
5 050 | | 9 • 1
117 | | | 8.3 | 262 | 30
1.50
52 | 14
1.15
40 | 5.2
.23
8 | 0.9 | 0.0 | 146
2.39
87 | 14
•29
11 | 2.4 | 0 • 1 | | 0.0 | | 131 | 132 | | | | | | | 20.00 | | | EEL RI | VFR. M | IODLE F | FORK, | AROVE | BLACK | BUTTE (| RIVER | | | | | | | | 10/03/68
0815 | 5050
5050 | | 9.7 | | F
C | 8.0 | 382 | | | 16
.70
18 | | 0.0 | 120
1.97
51 | | 30
.85
22 | 0.0 | | 0.3 | | | 149 | | 11/14/68 | 5050
5050 | 173 | 12.2 | | | 8.1 | 160 | | | 4.9
•21
13 | | 0.0 | 72
1.18
73 | | 4.2
.12
7 | 0 • 1 | | 0.0 | | | 69
10 | | 12/04/68
1250 | 5050
5050 | 192 | 13+3 | 41 | | 8.1 | 159 | | ** | 4.6
.20
12 | | 0.0 | 73
1.20
75 | | 4.2 | 0 • 1 | | 0.0 | •• | | 24 | | 02/05/69
1015 | 5050
5050 | 700 | 13+1 | 39 | | 8.0
7.3 | 111 | | | 2.6 | | 0 • 0 | 54
•89
80 | | 1.7
.05
4 | 0 • 1 | | 9 • 0 | | | 10 | | 03/05/69
1615 | 5050
5050 | 475 | 12.0 | 44 | | 7.7
8.0 | 131 | | | 2.6 | | 0.0 | 70
1.15
87 | | 2.2
.06
4 | 0.0 | | 0.0 | | •• | 63 | | 04/09/69
1245 | 5050
5050 | 760 | 12.5 | 46 | | 7.6
8.2 | 91 | | | 1.8
•08
8 | | 0.0 | 47
•77
84 | | 1.4 | 0 • 1 | | 0.1 | | | 42 | | 05/14/69
1035 | 5050
5050 | | 12.1 | 49 | | 7.4 | 61 | 8.8
.44
63 | 2.2
.18
26 | 1.3 | 0.6 | 0.0 | 34
•56
95 | 0.0 | 1.1 | 0 • 1 | | 0.1 | | 31 | 31
3 | | 06/11/69
1515 | 5050
5050 | | 106 | | | 8.4 | 92 | •• | ** | 2.0 | | 0.0 | .75
81 | | 2.4 | 0 • 0 | | 0.1 | | | 42
5 | | 07/16/69
1315 | 5050
5050 | 48 | 8.5 | | FC | 8.3 | 197 | | | 6.1
.27
13 | ** | 0.0 | 122 | | 7.9
.22 | 0 • 1 | | 0.0 | | | 94 | | 08/06/69
1130 | 5050
5050 | 20 | 9.3 | 74
23 | | 8.3 | 262 | •• | •• | 9.6
•42
16 | | 0.0 | 105
1.72
65 | | 16
• 45
17, | 0 • 1 | •• | 0.1 | | | 114 | | 09/10/69
1255 | 5050
5050 | | 9.4
117 | | | 8.3 | 342 | 2.20 | 3.9
.32
10 | 17
•74
22 | 1.4 | 0.0 | 118
1.94
57 | .60
18 | 28
•79
23 | 3.8
.06
? | | 0.3 | | 160
185 | 126
29 | | | | | F6 | 320 | 0.00 | | | 8L | ACK BUT | TTE RIV | VER NE | AR COV | ELO (5 | H) | | | | | | | | | 10/03/68 | 5050
50 50 | 14.15 | 8.2 | 63 | | 7.8
7.8 | 395 | ** | | 7.3
.32
8 | | 0.0 | 127
2.08
52 | | 2.7 | 0.0 | | 0.0 | | | 183
79 | | 11/14/68 | 5050
5050 | 14.27 | 11.9 | | F
C | 8.2 | 352 | •• | •• | 7.0
.30
8 | | 0.0 | 127
2.08
59 | | 3.0 | 0 • 0 | | 0.1 | | | 159
55 | | 12/04/68
1235 | 5050
5050 | 14.42 | 13.3 | 42 | | 8.3 | 565 | ** | •• | 6.2
.27 | | 0.0 | 105
1.72
65 | | 90. | 0.2 | | 0.0 | on 10 | | 129 | | 02/05/69
0955 | 505a
5050 | 17.22
954 | 12.9 | 39 | FC | 8.1 | 163 | | | 3.5
.15
9 | | 0.0 | 74
1.21
74 | | 1.6 | 0 • 1 | | 0.0 | | | 82
22 | | 03/05/69
1530 | 5050
5050 | 16.46
355 | 101 | 46 8 | F | 7.7
7.8 | 189 | ** | •• | 3.3
.14
7 | | 0.0 | 90
1.48
78 | | 1.4 | 0 • 0 | | 0.0 | | | 92
18 | | 04/09/69 | 5050
5050 | 16.31
574 | 12.0 | 47
8 | | 7.8
7.6 | 126 | | | 2.5 | | 0.0 | 60
.98
77 | | 1.0 | 0.2 | | 0.2 | | | 57 | | 05/14/69
1015 | 5050
5 050 | 15.50
930 | 12.0 | 51
11 | | 7.7
7.5 | 86 | 12
•60
68 | 2.2 | 1.8 | 0.6 | 0.0 | 44
•72
95 | 0.5 | 1.1 | 0 • 1 | | 0.1 | | 58
40 | 39 | | 06/11/69
1530 | 5050
5150 | 13.65 | 9.9 | | FC | 8.1 | 157 | | •• | 2.9 | | 0.0 | 75
1.23
78 | | 1.5 | 0.0 | | 0.0 | | | 74
13 | | 07/16/69
1340 | 5050
5050 | 12.79 | 8.4 | 80 | | 8.4 | 229 | | | 4.2
.18 | | 0.0 | 112
1.84
80 | | 1.9 | 0 • 1 | | 0.0 | ** | | 114 | | 08/06/69
1145 | 5050
5050 | 12.26 | | 75
24 | FC | 8.3 | 267 | •• | *** | 5.0 | | 0.0 | 117
1.92
71 | | 2.2 | 0 • 1 | •= | 0.0 | | | 129
33 | | | | G.H. | | | | FLD | EC
LAB
FLO | CA | MG | NA | K | PERC
CO3 | нсоз | ALENTS
ACTANCE
504 | PER L | NOR | F | H | 5102 | SUM | NCH | |----------------------|--------------|--------------|-------------|---------|--------|------------|------------------|------------------|------------------|------------------|--------|-------------|-------------------|--------------------------|-----------------|-------|----|-----|------|----------|----------| | | | | | | 00.00 | | | | | | | | /ELO (5 | | | | | | | | | | 10/69 | 5050
5050 | | 9.7 | | | 8.1 | 304 | 49
2.45
83 | 2.2 | 7.2
.31
11 | 0.5 | 0.0 | 110 | 51
1.06
36 | 2.6 | 0.0 | | 0.0 | | 169 | 131 | | | | | F6 | 5 41 | 00.00 |) | | EEL RI | VFR. S | OUTH F | ORK. N | EAR MI | RANDA | (7) | | | | | | | | | /02/68
1415 | 5050
5050 | | 12.1 | | | 8.0 | 282 | •• | | 10
•44
15 | | 0.0 | 145
2.38
84 | | 7.5
.21
7 | 0.3 | | 0.1 | | | 131 | | 13/68 | 5050
5050 | | 11.7 | | | 8.0 | 206 | | | H.2
.36
17 | | 0.0 | 102
1.67
81 | | 5.5 | 0 • 1 | | 0.1 | | | 88 | | 920 | 5050
5050 | 5.03
934 | 12.6 | 45 | | 8.0 | 169 | •• | | 7.1
.31
18 | | 0.0 | 84
1.38
81 | | 4.5
.13
7 | 0 • 1 | | 0.0 | | | 76
7 | | /22/69
)840 | | 14.04 | 11.9 | | F
C | 7.5
7.8 | 91 | •- | | 4.4
•19
20 | •• | 0.0 | 46
• 75
82 | | 2.6 | 0.6 | ** | 0.0 | | | 45 | | /04/69
1350 | 505n
5050 | 7.99
4470 | 102 | | | 8.0
7.6 | 112 | •• | | 4.9
.21
18 | •• | 0.0 | 56
•92
82 | | 3.1
.09
8 | 0.7 | | 0.0 | | | 52 | | /04/69
 410 | 5050
5050 | 8.15
4620 | 12.2 | | | 7.5
7.6 | 109 | | | 4.4
•19
17 | •• | 0.0 | 58
•95
87 | | 2.8 | 0.2 | | 0.0 | | | 46 | | 08/69
455 | 5050
5050 | | 11.5 | | | 7.7
7.7 | 142 | | | 5.4
.23
16 | | 0.0 | 72
1.18
83 | | 4.3 | 0.0 | | 0.0 | | | 60 | | 700 | 5050
5050 | 4.59
45n | 11.1 | | | 8.2 | 175 | 21
1.05
57 | 5.7
.47
26 | 6.6
.29
16 | 1.0 | 0.0 | 90
1.48
87 | 4.9
•10
6 | 4.5
.13
8 | 0 • 1 | | 0:1 | | 103 | 76 | | 11/69 | 5050
5050 | | 10.2 | | | 8.2 | 204 | •• | | 7.0
.30
14 | •• | 0.0 | 108
1.77
86 | | 5.1
.14
6 | 0.0 | | 0.1 | | | 92 | | 16/69 | 5050
5050 | 3.56
95 | 91 | 66 | F
C | 8.3 | 239 | | | 8.4
•37
15 | | 0.0 | 130
2.13
89 | | 5.2
.15
6 | 0.1 | | 0.0 | | | 116 | | 05/69
430 | 5050
5050 | | 13.0 | | | 8.4 | 237 | •• | | 9.1
.40
16 | •• | 0.0 | 125
2.05
86 | | 5.9
.17
7 | 0.3 | | 0.0 | | | 109 | | 10/69
850 | 5050
5050 | 38 | 7.4
8n | 66 | | 8.1 | 256 | 31
1.55
57 | 8.1
.67
25 | 11
•48
18 | 0.1 | 0.0 | 136
2.23
84 | 12
•25
9 | 6.9 | 0.0 | | 0.1 | | 103 | 111 | | | | | F6 | 53 | 0.00 |) | | VA | N DUZF | N RIVE | R NEAR | BR106 | EVILLE | (5A) | | | | | | | | | 01/68
530 | 5050
5050 | | 10.4 | | | 8.0 | 306 | | | 8.6
.37
12 | | 0.0 | 140
2.30
75 | •• | 4.5
•13
4 | •• | | 0.1 | | ** | 146 | | 12/68
41 5 | 5050
5050 | 6.74
137° | 11.7 | | | 7.5
7.5 | 148 | tod esp | | 4.0
.17
11 | | 0.0 | 65
1.07
72 | | 2.9
| •• | •• | 0.1 | | | 68
15 | | 03/68
330 | 5050
5050 | | 12.8 | 45 | F
C | 8.2 | 160 | | | 4.3
.19
11 | | 0.0 | 77
1.26
78 | | 2.6 | •• | | 0.0 | •• | •• | 85
22 | | 21/69
520 | 5050
5050 | 11.49 | | 46
R | | 7.8
8.3 | 98 | | •• | 3.0
.13
13 | | 0.0 | 56
•92
93 | •• | 1.6 | ** | | 0.0 | | •• | 52
6 | | 04/69 | 5050
5050 | 6.76
1277 | 13.1 | | | 7.9
7.5 | 121 | | | 3.6
.16
13 | | 0.0 | 61
1.00
82 | •• | 1.9 | •• | | 0.0 | •• | | 61 | | 04/69 | 5051
5150 | 6.74 | 13.0 | | | 7.3
8.0 | 118 | | | 3.1
.13
11 | | 0.0 | 59
.97
82 | | 1.7 | •• | •• | 0.0 | | | 57 | | 08/69 | 5050
5050 | 6.39 | 11.9 | | | 7.8
7.5 | 111 | | | 2.7 | | 0.0 | 58
• 95
85 | | 1.2 | •• | •• | 0.0 | | | 54 | | 13/69 | 5050
5050 | | 10.A
109 | | | 8.0 | 116 | 11
•55
•7 | 6.n
.49 | 2.5 | 0.6 | 0.0 | 58
• 95
89 | 4.4 | 1.2 | 9 • 1 | | 0.0 | | 80
54 | 52 | | 10/69 | 5050
5050 | | 10.3 | | | 8.0 | 173 | | | 3.6 | | 0.0 | 91
1.49
86 | •• | 2.1 | •• | ** | 0.0 | | | 8 | | 15/69
430 | 5050
5050 | 4.63
35 | 9.A
117 | | | 8.3 | 224 | | | 5.6
.24 | | 0.0 | 113
1.85
82 | •• | 2.5 | | •• | 0.0 | | | 114 | | DATE | LAH | 0.h. | υO | 76 | МР | H9
EAJ | EC
LAB | MI JERA | L CON | STITUE | ITS IN | MILL | LEQUIV | ALENTS | PER L | | М | ILLIGR | AMS PER | LITES
TOS | | |------------------------------|----------------------|----------------|------|----------|--------|------------|-----------|------------------|------------------|------------------|--------|--------|-------------------|-----------------|------------------|--------|-----|--------|---------|--------------|----------| | TIME | SAMPLER | | SAT | | | FLD | FLO | CA | MG | NA | К | CO3 | HC03 | _ | CL | FON | F | В | 5102 | SUM | NCH | | | | | F6 | 530 | 0.00 |) | | VAN | OUZF | N PIVER | NEAR | 981DG | SEVILLE | (5A) | (| CONTIN | UED | | | | | | 08/05/6 ⁹
1155 | 9 515r
5050 | | 10.0 | | F
C | 8.3 | 267 | | | 6.8
.30
11 | | 0.0 | 140
2.30
86 | •• | 3.1
.09
3 | •• | •- | 0.0 | | | 127 | | 09/09/69
1515 | 9 5050
5050 | | 10.0 | | | 7.9
8.2 | 251 | 32
1.50
64 | 6.4
.54
22 | 8.6
.37
15 | 0.1 | 0.0 | 113
1.85
73 | 27
•56
22 | 4.0
.11
4 | 0•0 | | 0.0 | | 105
134 | 107 | | | | | F7 | 110 | 0.00 | , | | 44 | TTOLE | RIVER | NEAR | PETROL | IA (7A) | | | | | | | | | | 10/02/68 | 8 5150
5050 | | 11.2 | | | 7.9
8.1 | 272 | | | 9.5
•41
15 | •• | 0.0 | 120
1.97
72 | ~- | 5.0
.14
5 | •• | | 0.1 | •• | •• | 128 | | 11/13/68 | 8 5050
5050 | 4.46
908 | 11.6 | | | 7.9 | 168 | ~~ | | 7.0
.30
17 | | 0.0 | 67
1.10
65 | | 3.9
.11
6 | •• | | 0.0 | | | 70
15 | | 01/21/69
1235 | | 11.44
12510 | 11.3 | 51
11 | FC | 7.3
8.3 | 86 | •• | | 4.5
•20
23 | | 0.0 | 38
•62
72 | •• | 2.7 | •• | | 0.0 | | •• | 39
8 | | 05/13/69
1300 | 9 5050
5050 | 3.70
3a5 | 10.6 | | | 7.9 | 170 | 1.10 | 3.6
.30
18 | 6.3
.27
16 | 0.8 | 0.0 | 78
1•28
75 | 14
•29
17 | 4.7
.13
8 | 0.0 | | 0.1 | | 90 | 70 | | 09/09/69
1305 | 5 5 5 5 6
5 7 5 n | 38
38 | 13.7 | | F
C | 8.3 | 235 | 33
1.55
65 | 5.2
.43
17 | 9.7
•42
17 | .03 | 0.0 | 106
1.74
73 | 25
•52
22 | 4.6
.13
5 | 0 • 0 | ~- | 0.0 | •• | 93
131 | 104 | | | | | F7 | 510 | 0.00 | | | | BEAR | RIVER | NEAR | CAPETO | WN (78) | | | | | | | | | | 10/02/68 | 5050 | | 11.3 | | FC | 8.1 | | | | | | •• | •• | | ** | | •• | - " | | •• | •• | | 11/13/68
0915 | 5050 | 150 | 12.2 | 49 | FC | 7.5 | | | | | •• | •• | | | | | ** | | | | •• | | 01/21/69
1135 | 5050
5050 | | 11.4 | 46 | | 7.6
7.6 | 135 | | | 7.9
•34
25 | | 0.0 | 47
•77
57 | •• | 7.6
.21
15 | | | 0.1 | | | 61
23 | | -05/13/69
1225 | 5050
5050 | 75 | 10.2 | 65
18 | | 7.9
7.9 | 211 | 28
1.40
64 | 5.4 | 7.4
.32
15 | 0.8 | 0.0 | 85
1.39
64 | 29
•60
28 | 6.5 | 0.0 | •• | 0.0 | •• | 138 | 92
23 | | 09/09/69
1235 | 5050
5050 | 50 | 10.2 | 69 | | 7.9
8.1 | 269 | 34
1.70
61 | 6.6 | 12
•52
19 | 1.0 | 0.0 | 110
1.80
65 | 37
•77
29 | 7.4
.21
8 | 0 • 0 | •• | 0.1 | •• | 126
152 | 22 | TABLE D-3 TRACE ELEMENT ANALYSES OF SURFACE WATER North Coastal Area | CTATION | STATION | DATE | | | 100 | C | ONST | ITUE | ITS IN | MICR | OGRAN | IS PER | RLITE | ER | | | | | | |--------------------------------------|-----------|--------------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | STATION | NUMBER | DATE | (AI) | (Be) | (Bi) | (Cd) | (Co) | (Cr) | (Cu) | (Fe) | (Go) | (Ge) | (Mn) | (Mo) | (NI) | (Pb) | (Ti) | (V) | (Zn) | | v r abov Outlet Creek (5d) | F61329.50 | 5-14-69
9-10-69 | 2.3 | <0.6 | <0.3 | <1.4 | <1.4 | <1.4
<1.4 | <1.4
<1.4 | 4.6 | < 5.7
- 5.7 | <0.6 | <1.4
-1.4 | ~0.3
~1.1 | 0.8 | -1.4 | -0.6
-0.6 | -0.3 | -5.7
-5.7 | | Riv r, Middle Fork, at Dos Rios (5c) | F63010.00 | 5-14-69 | 43
2.6 | <0.6
<0.6 | <0.3 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | 51
10 | <5.7
<5.7 | <0.3
<0.3 | <1.4
<1.4 | <0.3
<1.4 | 2.9 | <1.4
-1.4 | -0.6 | -0.3
0.4 | <5.7
<5.7 | | Riv r at Scotia (6) | F61100.00 | 5-13-69
9- 9-69 | 286
<1.4 | <0.6
<0.6 | <0.3 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | 11
8.0 | <5.7
<5.7 | <0.6
<0.3 | <1.4
<1.4 | <0.3 | 1.2 | <1.4
1.4 | <0.6
<0.6 | <0.3
0.4 | <5.7
<5.7 | | ver, South Fork, near Miranda (7) | F64100.00 | 5-13-69 | 3.1 | <0.6 | <0.3 | <1.4 | <1.4 | <1.4 | <1.4 | 7.1 | < 5.7 | <0.3 | <1.4 | <0.3 | 1.9 | <1.4 | <0.6 | <0.3 | < 5.7 | | th River below Iron Gate Dam (1f) | F31600.00 | 5-12-69
9-15-69 | 183
27 | <0.6
<0.6 | <0.3
<0.3 | <1.4
<1.4 | 6.0 | <1.4
<1.4 | <1.4
<1.4 | 186 | <5.7
<5.7 | <0.3 | <1.4 | 2.4 | 2.9 | <1.4
<1.4 | 3.1 | 7.1 | -5.7
-5.7 | | sth River rear Mamath (3) | F31100.00 | 5-13-69
9- 9-69 | 86
<1.4 | <0.6
<0.6 | <0.3
<0.3 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | 31
13 | <5.7
<5.7 | <0.6
<0.3 | <1.4 | <0.3
<0.6 | 3.1 | <1.h <1.h | 2.2 | 0.9 | -5.7
-5.7 | | sth River at Orleans (2c) | F31220.01 | 9- 8-69 | <1.4 | <0.6 | <0.3 | <1.4 | <1.4 | <1.4 | <1.4 | 18 | < 5.7 | <0.3 | <1.4 | <0.3 | 1.0 | <1.4 | <0.6 | 4.9 | -5.7 | | ith River near Seiad Valley (2b) | F31430.00 | 5-12-69
9-16-69 | 71 23 | <0.6
<0.6 | <0.3
<0.3 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | 83
7.4 | <5.7
<5.7 | <0.3
<0.3 | <1.4 | <0.3 | 4.6 | <1.4 | 3.1 | 2.2 | <5.7
<5.7 | | R wer n ar Arcata (6a) | F51100.00 | 5-13-69
9- 9-69 | 4.9 | <0.6
<0.6 | <0.3
<0.3 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | 17
11 | <5.7
<5.7 | <0.3 | <1.4
<1.4 | <0.3
<0.7 | <0.3
<0.3 | <1.4 | -0.6
-0.6 | <0.3
>0.3 | -5.7
-5.7 | | Lty River near Hoopa (4) | F41090.00 | 5-12-69
9- 8-69 | 31 <1.4 | <0.6
<0.6 | <0.3
<0.3 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | <1.4
<1.4 | 15
14 | <5.7
<5.7 | <0.3 | <1.4
<1.4 | <0.3
<0.3 | 1.1 2.7 | <1.4 | -0.6
-0.6 | 0.3 | <5.7
-5.7 | - | | | | | | | | | | | | 1 | | | | | | | | | - | TITUENTS | <u> </u> | | | | | | | | | ts are more than the amount indicated. ts are less than the amount indicated. Al - Aluminum Be - Beryllium Bi - Bismuth Cd - Cadmium Co - Cobalt Cr - Chromium Cu - Copper Pe - Iron Ga - Gallium Pb - Lead Ti - Titanium V - Vanadium Zn - Zinc ### MISCELLANEOUS CONSTITUENTS IN SURFACE WATER | Station | | | | | PO | Other Constituents ** | |-----------|--|---|--|---|--|--| | Number | Date | Hellige | Hach | Jackson Candle | in | in mg/l | | F75100.00 | 10- 2-68
11-13-68
1-21-69
5-13-69
9- 9-69 | 1400
5
0 | 0.24 | | | As 0.00
As 0.00 | | F63200.00 | | | 0.28
0.43 | | 0.02
0.03
0.00
0.05
0.03
0.49
0.06
0.05
0.09#
0.01# | | | F61329.50 | 12- 4-68
1-22-69
2- 5-69
3- 5-69
4- 9-69
5-14-69
6-11-69
7-16-69
8- 6-69 | 2
1600
340
80
35
15
3
4 | 0.3
0.24
0.11 | | 0.01
0.00
0.40
0.26
0.18
0.00
0.09
0.03
0.02
0.00# | As 0.00 | | F61100.00 | 12- 3-68
1-21-69
2- 4-69
3- 4-69
4- 8-69
5-13-69
6-10-69
7-15-69
8- 5-69 | 10*
550*
550*
540*
60*
95*
4*
2* | 0.68
0.35 | | 0.52
0.28
0.10
0.23
0.06
0.06
0.03
0.07
0.06
0.06 | Li 0.01 Fe 0.00 Sr 0.49 Li 0.01 Fe 0.10 Sr 0.33 Li 0.01 Fe 0.06 Sr 0.20 Li 0.01 Fe 0.01 Sr 0.12 Li 0.02 Fe 0.02 Sr 0.20 Li 0.02 Fe 0.07 Sr 0.20 Li 0.01 Fe 0.00 Sr 0.14 Li 0.01 Fe 0.02 Sr 0.21 Li 0.01 Fe 0.02
Sr 0.21 Li 0.01 Fe 0.02 Sr 0.22 Li 0.01 Fe 0.01 Sr 0.34 Li 0.00 Fe 0.01 Sr 0.51 Li 0.01 Fe 0.00 Sr 0.5 | | F61154.50 | 11-13-68
12- 4-68
1-22-69
2- 4-69
3- 4-69
4- 8-69
5-13-69
6-11-69
7-15-69
8- 5-69 | 35
35
2700
390
380
110
200
7 | 0.3 ¹ 4
0.1 ¹ 4 | *** | | | | F63120.00 | 11-14-68
12- 4-68
2- 5-69
3- 5-69
4- 9-69
5-14-69
6-11-69
7-16-69
8- 6-69 | 3
70
20
25
180
5 | 0.48
0.2
0.17 | | 0.01
0.03
0.02
0.08
0.01
0.11
0.08
0.05
0.05 | As 0.01 | | F63010.00 | 11-14-68
12- 4-68
1-22-69
2- 5-69
3- 5-69
4- 9-69 | 6
8
2300
600
210
140
1400 | 1.4 | | 0.00
0.06
0.09
0.06
0.07
0.00
1.3
0.03
0.06
0.00# | As 0.00 | | | F61329.50 F61100.00 F63120.00 | Station Number Date | Station Number Number Hellige | Station Number Date Turbidity in Jackson Hellige Hach | Number Hellige Hach Jackson Candle | Station Number Turbidity in Jackson Candle Units Hellige Hach Jackson Candle Img/1 | ^{*} These values reported in ppm of Silica by the U. S. Geological Survey ** Li - Lithium, Sr - Strontium, Fe - Iron, As - Arsenic # PO₄ reported as (P) Phosphorus ### TABLE D-4 (CONTINUED) ### MISCELLANEOUS CONSTITUENTS IN SURFACE WATER | | Station | | | in Jackson | Candle Units | PO ₄ | Other Constituents ** | |---|-----------|---|--|--------------------|----------------|--|---| | Station | Number | Date | Hellige | Hach | Jackson Candle | in T
mg/i | in mg/l | | 1 River, South Fork near Miranda (7) | F64100.00 | 10- 2-68
11-13-68
12- 4-68
1-22-69
2- 4-69
3- 4-69
4- 8-69
5-13-69
6-11-69
7-16-69
8- 5-69
9-10-69 | 2
40
25
1800
550
390
15
3
5
4
4 | 0.3 | | 0.05
0.16
0.07
0.26
0.16
0.06
0.12
0.10
0.06
0.01#
0.00# | | | amath River above Hamburg Reservoir Site (lc) | F31470.00 | 11-13-68
1-20-69
3-10-69
5-12-69
7- 7-69
9-16-69 | 6
160
35
25
12
35 | 2
2.4 | | 0.64
0.48
0.44
0.68
0.21# | | | amath River at Orleans (2c) | F31220.01 | 9-30-68
11-11-68
12- 2-68
2- 3-69
3- 3-69
4- 7-69
5-12-69
6- 9-69
7-14-69
8- 4-69
9- 8-69 | 2
10
5
95
35
100
120
20
4
10 | 1.4
2.1
1.5 | | | | | amath River below Iron Gate Dam (lf) | F31600.00 | 10- 9-68
11-13-68
12-10-68
1-20-69
2-17-69
3-10-69
4- 8-69
5-12-69
6- 9-69
7- 7-69
8-12-69
9-15-69 | 2
4
25
1000
25
25
25
20
3
9
8 | 2.5
1.0
1.6 | | 0.74
0.68
0.81
0.69
0.57
0.53
0.74
0.28
0.37
0.31#
0.21# | As 0.02 | | amath River near Klamath (3) | F31100.00 | 10- 1-68
11-12-68
12- 3-69
1-20-69
2- 3-69
3- 3-69
4- 8-69
5-13-69
6-10-69
7-15-69
8- 5-69
9- 9-69 | 350*
5*
200*
44*
150*
90*
95*
30*
3*
2*
4* | 1.4
0.35 | | 0.06
0.24
0.05
0.07
0.20
0.15
0.08
0.14
0.13
0.28 | Li 0.01 Fe 0.00 Sr 0.15 Li 0.01 Fe 0.07 Sr 0.08 Li 0.01 Fe 0.04 Sr 0.07 Li 0.01 Fe 0.01 Sr 0.07 Li 0.02 Fe 0.04 Sr 0.10 Li 0.02 Fe 0.01 Sr 0.11 Li 0.01 Fe 0.02 Sr 0.04 Li 0.01 Fe 0.06 Sr 0.05 Li 0.01 Fe 0.06 Sr 0.05 Li 0.01 Fe 0.01 Sr 0.09 Li 0.00 Fe 0.02 Sr 0.14 Li 0.01 Fe 0.02 Sr 0.14 Li 0.01 Fe 0.02 Sr 0.14 | | umath River near Seiad Valley (2b) | F31430.00 | 11-13-68
12-10-68
1-20-69
2-17-69
3-10-69
4- 8-69
5-12-69
6- 9-69
7- 7-69
8-12-69
9-16-69 | 8
40
210
45
20
40
90
45
7
10 | 1.6
0.8
2.8 | | 0.47
0.56
0.37
0.30
0.94
1.1
0.26
0.09#
0.13# | As 0.00 | | 1 River near Arcata (6a) | F51100.00 | 10- 2-68
11-12-68
12- 3-68
1-20-69
2- 3-69
3- 3-69
4- 7-69
5-13-69
6-10-69
7-15-69
8- 5-69
9- 9-69 | 300
340
120
140
5
8 | 6.6
0.33
8.1 | | | | These values reported in ppm of Silica by the U. S. Geological Survey Li - Lithium, Sr - Strontium, Fe - Iron, As - Arsenic PO₄ reported as (P) Phosphorus ### TABLE D-4 (CONTINUED) # MISCELLANEOUS CONSTITUENTS IN SURFACE WATER | Station | Station | | | in Jackson | Candle Units | PO ₄ | Other Constituents ** | |-------------------------------------|-----------|---|---|-------------------|----------------|--|-----------------------| | Station | Number | Date | Hellige | Hoch | Jackson Condle | in 4
mg/l | in mg/l | | Mattole River near Petrolia (7a) | F71100.00 | 10- 2-68
11-13-68
1-21-69
5-13-69
9- 9-69 | 2
80
2600
3
5 | 0.35 | | | | | Mill Creek near Covelo (5e) | F63050.00 | 12- 4-68
1-22-69
2- 5-69
3- 5-69
4- 9-69
5-14-69
6-11-69 | 3
400
120
45
7
10 | | | 0.10
0.03
0.15
0.04
0.12
0.06
0.10 | As 0.00 | | Outlet Creek near Longvale (5b) | F61350.00 | 10- 3-68
11-14-68
12- 4-68
1-22-69
2- 5-69
3- 5-69
4- 9-69
5-14-69
6-11-69
7-16-69
8- 6-69
9-10-69 | 1
4
15
340
140
25
5
3
2
8
15 | | | | | | Redwood Creek at Orick (3b) | F55100.00 | 10- 1-68
11-12-68
12- 3-68
1-20-69
2- 3-69
3- 3-69
4- 7-69
5-13-69
6-10-69
7-15-69
8- 5-69
9- 9-69 | 1
790
90
2400
280
550
95
70
5
4 | 0.7
0.9
1.3 | | | As 0.00 | | Salmon River at Somesbar (2a) | F34100.00 | 5-12-69
9- 8-69 | 120 | 0.16 | | | | | Scott River near Fort Jones (1b) | F25250.00 | 10- 9-68
11-14-68
1-20-69
3-10-69
5-12-69
7- 8-69
9-16-69 | 1
6
210
4
55
8
1 | | | | As 0.00 | | Shasta River near Yreka (la) | F21050.00 | 10- 9-68
11-13-68
12-10-68
1-20-69
2-17-69
3-10-69
4- 8-69
5-13-69
6- 9-69
7- 7-69
8-12-69
9-15-69 | 2
6
20
400
15
7
30
15
7
25
15 | 4 | | | As 0.00 | | Smith River near Crescent City (3a) | F01300.00 | 10- 1-68
11-12-68
12- 3-68
1-21-69
2- 4-69
3- 3-69
4- 8-69
5-13-69
6-10-69
7-15-69
8- 5-69
9- 9-69 | 2
55
20
290
20
10
3
15
3
4
5 | | | | As 0.00 | | | | 6-10-69
7-15-69
8- 5-69 | 3
4
5
1 | | | | | ^{**} Li - Lithium, Sr - Strontium, Fe - Iron, As - Arsenic ### TABLE D-4 (CONTINUED) ### MISCELLANEOUS CONSTITUENTS IN SURFACE WATER | | Station | Dete | Turbidity | in Jockson | Candle Units | PO ₄ | Other Constituents ** | |---------------------------------------|-----------|--|---|-------------|----------------|---|-----------------------| | Station | Number | Date | Hellige | Hoch | Jackson Candle | in mg/l | in mg/l | | Trinity River near Hoopa (4) | F41090.00 | 9-30-68
11-11-68
12- 2-68
2- 3-69
3- 3-69
4- 7-69
5-12-69
6- 9-69
7-14-69
8- 4-69
9- 8-69 | 2
9
30
250
190
120
130
30
4
4 | 0.33
0.4 | | 0.02
0.08
0.07
0.09
0.04
0.83
0.72
0.20
0.00#
0.00# | | | Trinity River at Lewiston (4a) | F41640.00 | 9-30-68
11-11-68
1-20-69
3- 3-69
5-12-69
7-14-69
9- 8-69 | 1
2
10
10
4
4
8 | | | 0.02
0.07
0.00
0.00
0.07
0.00# | | | Frinity River near Burnt Ranch (4b) | F41376.00 | 11-11-68
1-20-69
3- 3-69
5-12-69
7-14-69
9- 8-69 | 3
190
10
50
4
1 | | | 0.02
0.05
0.00
0.38
0.00# | As 0.00 | | /an Duzen River near Bridgeville (5a) | F65300.00 | 10- 1-68
11-12-68
12- 3-68
1-21-69
2- 4-69
3- 4-69
4- 8-69
5-13-69
6-10-69
7-15-69
8- 5-69
9- 9-69 | 2
140
40
3200
210
130
50
80
3
1
4 | 0.32 | | | As 0.00 | | illiams Creek near Covelo (5f) | F63105.00 | 10- 3-68
11-14-68
12- 4-68
12- 5-69
2- 5-69
3- 5-69
4- 9-69
5-14-69
6-11-69
7-16-69
8- 6-69
9-10-69 | 0.8
2
380
80
25
7
55
45
4 | 0.38 | | 0.00
0.02
0.04
0.05
0.07
0.00
0.06
0.07
0.19
0.01#
0.02 | As 0.00 | | | | | | | | | | | | | | | | | | | Li - Lithium, Sr - Strontium, Fe - Iron, As - Arsenic PO₄ reported as (P) Phosphorus APPENDIX E GROUND WATER QUALITY #### INTRODUCTION This appendix presents ground water quality data collected during the period from October 1, 1968, through September 30, 1969. The data were collected from a number of major ground water sources in the North Coastal area in cooperation with local agencies. During the 1969 water year, 78 wells were sampled in 12 ground water basins. At the time of field sampling, pH, specific conductance, and temperature measurements are normally made. Comments on local conditions are noted in field books which are available in the files of the Department of Water Resources. Laboratory analyses of ground waters were performed in accordance with "Standard Methods
for the Examination of Water and Waste Water", 12th Edition. The Region and Basin and State Well Numbering Systems are described in Appendix C, "Ground Water Measurements". #### TABLE E-1 MINERAL ANALYSES OF GROUND WATER An explanation of column headings follows: The LAB and SAMPLER agency codes are as follows: 5000 - U. S. Geological Survey 5050 - California Department of Water Resources TIME - Pacific Standard Time on a 24-hour clock. TEMP - Water temperature in degrees Fahrenheit at the time of field sampling. Water temperature in degrees Celsius is computed from degrees Fahrenheit. PH LAB & FIELD - Measure of acidity or alkalinity of water. EC LAB - The electrical conductance in micromhos at 25° Celsius. <u>EC FIELD</u> - The electrical conductance in micromhos at temperature when sampled. TDS - Gravimetric determination of total dissolved solids at 180° Celsius. - Total dissolved solids determined by addition of analyze constituents. TH - Total hardness. SUM NCH - Non-carbonate hardness. #### The MINERAL CONSTITUENTS are as follows: K - Potassium В - Boron CA - Calcium - Magnesium CL - Chloride NA - Sodium CO_F3 NO₃ - Nitrate - Carbonate SID - Silica - Sulfate - Fluoride HCO₂ - Bicarbonate SO_L | UATE
TIME | LAH
SAMPLEH |
TEMP | PH
LA3
FLD | EC
LAB
FLU | | MG | NA | NIS 1 | PERI | 16001V
2641 RE
4003 | ACTANO | E VALU | | F | | 5102 | R LITE | TH
NCH | |-----------------|----------------|----------------|------------------|------------------|-----------|------------|--------------|---------|------|---------------------------|--------|-----------|-----|-----|-------|-------|------------|-----------| | | | | | | CMTTM. | 21150 | DI 4 *** | | | | | | | | | | | | | | | 164/~2#-1 | 3E01 H | | 2∞11⊔ | KINEK | PLAIN | 1-1-0 | 0 | | | | | | | | | | | 1300 | 5050 | 59.0F | 6.1 | 355 | | | | | | | | | | | ~~ | | ~~ | 40 to | | 1000 | | 17N/n1w-0 | | | | | | | | | | | | | | | | | | 1/29/69 | | 5H.0F | | | | | | | ~ ~ | | | | •• | | ~ = | | | | | 1205 | 5 u51 | 14.4C | 6.1
14J61 H | 115 | | | | | | | | | | | | | | | | 4/29/69 | | 57.CF | | | | ~~ | | Que 100 | | | | | •• | ~~ | | ~ ~ | ~~ | | | 1000 | 5,50 | 13.80 | 7.1 | 285 | | | | | | | | | | | | | | | | | | 174/01#-1 | 4C02 H | ~ = | | | | | | | | | | | | | | | | 0915 | 5150 | 67.0F
19.4C | 6.5 | 178 | | | | | - | | | | | | | | | | | | | 18N/~1w-0 | 5K01 H | | | | | | | | | | | | | | | | | 8/27/69
1320 | 5050 | 63.0F
17.2C | 6.0 | 182 | | | ~ ~ | | | | ~~ | 100 100 | | | us 40 | | *** | | | | | 18N/01W-1 | 7R04 H | | | | | | | | | | | | | | | | | 1600 | 5050 | 69.0F
20.50 | 7.7
7.1 | 270
285 | 18 | 16 | 15 | 0.4 | 0.0 | 134 | 1.6 | 18 | ۶.0 | *** | 0.0 | | 162
135 | 110 | | | | 18N/01M-5 | | | 31 | 46 | 23 | | | 80 | 1 | 19 | | | | | | | | 8/28/69 | | 65.0F | | | | | | | | ~ ~ | | | | •• | | | | | | 1135 | 5050 | 18.3C | 6.3 | 102 | | | | | | | | | | | | | | | | 8/28/69 | 5050 | 10N/n1#=3 | 7.6 | 363 | 15 | 37 | 4.2 | 1.1 | 0.0 | 216 | 6.7 | 5.8 | 4.3 | | 0.0 | | 199 | 189 | | 1030 | 5,50 | 17.70 | 7.0 | 370 | - | 3.04 | .18 | .03 | | 3.54 | •14 | .16 | .07 | | | | 180 | 12 | 464/12E-1 | 5F01 M | | KLAMAT | HRIVE | R BASI | N 1-2 | .00 | | | | | | | | | | | 1030 | 5050
5050 | 62.0F | 7.4 | 155 | 8.7 | 5.5 | .57 | 2.0 | 0.0 | 56
.92 | 9.7 | 7.7 | 3.6 | | 0.2 | | 147 | 44 | | 1030 | 3,30 | 47N/r2E-2 | | | 29 | 30 | 38 | 3 | | 66 | 14 | 16 | 4 | | | | | Ť | | 8/09/69 | 5050 | 61.0F | | 1280 | 91 | 54 | 94 | 3.6 | 0.0 | 117 | 213 | 176 | 87 | | 0.4 | no to | 876 | 459 | | 0835 | 5050 | 16.00 | 6.9 | 1420 | 35 | 4.6n
36 | 3.65
28 | 1 | | 1.92 | 4.43 | 39 | 11 | | | | 768 | 363 | | | | | | | BUTTE | VALLEY | 1-3. | 00 | | | | | | | | | | | | | | 45N/11E-0 | 9C02 M | | | | | | | | | | | | | | | | | 1140 | 5050 | 59.0F
14.9C | 7.7 | 180 | | | | •• | | | | | | | | | •• | •• | | | | 45N/02#-0 | 1P01 M | | | | | | | | | | | | | | | | | 8/08/69 | 5050 | 55.CF
12.7C | 6.5 | 215 | | | | | | | | | | | | | ₩~ | *** | | 16.10 | 3331 | 46N/01#-0 | | | | | | | | | | | | | | | | | | 8/07/69 | | 59.0F | | | | | | | | | | | | | | | | | | 1530 | 5150 | 14.9C | | 405 | | | | | | | | | | | | | | | | 8/07/69 | | 56.0F | | | | | - | | | | ~- | | | | | | - | | | 1645 | 5v50 | 13.3C | 8.2 | 365 | | | | | | | | | | | | | | | | * 10.7 | | 46N/n1W-1 | | | | | | | | | | | | | | | | | | 1630 | 5050 | 56.0F
13.3C | 7.5 | 480 | | | ** | | | | •• | | | | | | | | | | | 464/02#-1 | 6A02 M | | | | | | | | | | | | | | | | | 8/08/69
1445 | 5050
5050 | 52.0F | 8.0 | 174
175 | 13
•65 | 9.4 | 8.7
.38 | 2.0 | 0.0 | 106
1.74 | 0.5 | 1.8 | 0.9 | ** | 0.0 | | 125 | 71 | | | | 47N/c1E=3 | | | 35 | 42 | 21 | 3 | | 96 | 1 | 3 | 1 | | | | | | | 1305 | | 7n.0F | | 216 | 7.6 | 4.9 | 30 | 8.0 | 0.0 | 122 | 0.6 | 5.2 | 1.8 | | 0.1 | | 168 | 39 | | 1305 | 5050 | 21.0C | | 518 | . 38 | 17 | 1 • 31
57 | .20 | | 3.00 | • 0 1 | • 15
7 | .03 | | | | 110 | 0 | | 1/07/69 | | 72.GF | 31102 M | | | | | | | | | | | | w ** | | | | | 1250 | 5050 | 55.50 | | 260 | | | | | | | | | | | | | | | | 1/07/40 | | 47N/r2W-2 | | | | | | | | | | | | | | | | - | | 1400 | 5.650 | 54.0F
14.4C | 7.1 | 130 | ~- | | | | | | | | | | | | | | | | | 48N/11E-3 | 0F01 M | | | | | | | | | | | | | | | | | 107/69 | 5150 | 59.0F
14.90 | 7.8 |
375 | | | | | | | | | | | | | | | | | | 48N/~1E=3 | 1003 4 | | | | | | | | | | | | | | | | | /0//69 | | 75.0F | | | | | | | | | | | | | | | •• | | | | 5.50 | 23.80 | 8.4 | 475 | | | | | | | | | | | | | | | ### TABLE E-1 (CONTINUED) | OATE
TIME | LAO
SAMPLEP | TEMP | PH
LAB
FLD | EC
LAB
FLO | C7
WI 1EH | AL CON | | NTS [N | PERC | .13RAMS
.1EQUIV
.ENT RE
HCO3 | ALENTS
ACTANO | PEH L | | р
F | llligra | 5102 | TD5 | ?
TH
NCH | |------------------|----------------|-----------------------------|----------------------|------------------|------------------|------------------|-------------------|-----------------|------|---------------------------------------|------------------|-------------------|---------------------|--------|---------|--------|------------|------------------| | | | 48N/n1W-2 | 8F01 M | | BUTIE | VHLLEY | 1-3- | 00 | | | | | CONTIN | CEU | | | | | | 08/07/69 | 5050 | 84.0F
28.8C | 9.1
8J01 M | 500 | ~- | | | | ** | | | | | | | •• | | | | 08/07/69 | 5050 | 63.UF
17.2C | 7.7 | 395 | | | | | •• | | •• | •• | | | | | | | | 08/06/69
1630 | 5050
5050 | 5 F
10 C | 7.8 | 1330 | 27
1.35
8 | | 169
7.35
46 | 28
.72
4 | 0.0 | 845
13,86
88 | 54
1.12
7 | .73
.5 | 8.2 | | 0.3 | | 809 | 401 | | | | 42N/^5W-2 | 0J01 M | | SMASTA | VALLE | Y 1-4 | • 0 0 | | | | | | | | | | | | 08/25/69
1130 | 5050 | 66.0F
18.8C | 6.9
0J01 M | 320 | •• | | •• | | ** | | •• | •• | | | | | | | | 08/25/69
1250 | 5050 | 63.0F
17.2C
43N/05W-0 | 7.3
2C01 M | 590 | | | | | •• | | | | | | | •• | | | | 08/25/69
1610 | 5050 | 57.0F
13.8C | 6.5
1R01 M | 248 | | | | | | a # | | •• | | | | | | | | 08/25/69
1345 | 5050 | 61.0F | 7.3 | 490 | | | | | | | | | | | | | | -1 | | 08/25/69
1515 | 5050
5050 | 65.0F
18.3C | 7.3 | 1400 | 52
2.59
18 | 72
5.92
41 | 132
5.74
40 | 4.9
.13
1 | 0.0 | 558
9.15
64 | .23 | 169
4.77
33 | 12
•19
1 | | 1.6 | | 754
728 | 426
0 | | 08/25/69
1520 | 5050
5050 | 64.0F | 7.7
7.3 | 1060
1130 | 56
2.79
22 | 69
5.67
45 | 92
4.00
32 | 4.1
.10
1 | 0.0 | 563
9.23
75 | 16
•33
3 | 96
2.71
22 | 3.6 | | 1.1 | | 649 | 424 | | 08/25/69
1545 | 5050
5050 | 58.0F
14.4C | 7.5
7.0
2K01 M | | 52
2.59
33 | 35
2.88
37 | 50
2.18
28 | 7.1
.18
2 | 0.0 | 379
5.22
82 | .37
5 | 35 | 8.1 | | 0.5 | •• | 468
388 | 27 3
0 | | 08/25/69
1430 | 5050 | 69.0F
20.5C | | 475 | | | | | | | | | | | | | | | | 08/26/69
1600 | 5050 | 65.0F
18.3C | | 1000 | *** | | | •• | •• | •• | ** | •• | | | | •• | | | | 05/19/69 | 5000
5000 | 45N/16W-1 | | 496 | 48
2.40
45 | 21
1.73
32 | 28
1.22
23 | 0.5 | 0.0 | 282
4.62
88 | .23
4 | 6.2 | 15
•24
5 | 0.3 | 0.0 | 38 | 288
306 | 206 | | 05/20/69 | 5000
5000 | 45N/06#-1 | 7.8
9E01 M | | 41
2.05
45 | 18
1.48
32 | 24
1+04
23 | 0.5 | 0.0 | 200
3.28
73 | 15
•31
7 | 17
•48
11 | 28
•45
10 | 0.3 | 0.0 | 37 | 220
279 | 176
12 | | 08/26/69
1500 | 5050 | 67.0F
19.4C | 7.5 | 355 | | | | | | | | | •• | | | | •• | | | | | 42N/09W-0 | 2G01 M | | SCOTT | RIVER | VALLEY | 1-5.0 | 0 | | | | | | | | | | | 08/26/69
1050 | 5050 | 57.0F
13.8C
42N/09W-2 | 7.1
7K01 M | 540 | ~* | •• | | •• | | •• | •• | | •• | | •• | ap 100 | | | | 08/26/69
1125 | 5,50 | 63.0F
17.20
43N/09W-0 | 6.1
2G01 M | 58 | *** | •- | | •• | | | | | | | | | | | | 08/26/69
0900 | 5050 | 63.0F
17.20
43N/09W-0 | 7.1
8F01 M | 515 | ₩ == | | | | | | | | | | | | •• | Ī | | 08/26/69
1315 | 5050
5050 | 64.0F
17.7C
43N/09W-2 | 6.3 | 94
95 | 13
.65
56 | 2.6 | 12 | 0.1 | 0.0 | 51
.84
93 | 0.0 | 1.2 | 1 + 6
+ 0 3
3 | •• | 0.0 | | 69
46 | 43 | | 08/26/69
1005 | 5050
5050 | 57.0F
13.8C
43N/09W-2 | 7.1 | 408
415 | | | 4.7
.20
4 | •• | 0.0 | 264
4.33
106 | | 2.8 | •• | | 0.0 | | | 226
10 | | 08/26/69
1245 | 5050 | 67.0F
19.4C | 6.1 | 59 | | | | | ** | •= | | | •• | •• | •• | | | | ### TABLE E-1 (CONTINUED) | | | | РН | EC | MINE | AL CO | STITHE | NTS TA | | LIGRAMS
LIEDUIV | | | TTEU | | /1:: 16u | 4 M C D C | 0 1 176 | ٥ | |------------------|-----------------|----------------|--------|------------|------------------|------------------|------------|--------|-----|--------------------|-----------------|-----------------|-----------------|------|------------------|--------------|----------|----------| | DATE | L 40
SAMPLER | TEMP | EAJ
| | | | | | PER | CENT RE | ACTANO | E VALU | Ε | | | | TOS | In | | | |
 | 43N/10H-1 | 1E01 H | | SCOTT | HIVER | VALLEY | 1-5 | .00 | | | | CONTIN | (36) | | | | | | 08/26/69
1340 | 5050
5050 | 55.0F
12.7C | | 100 | 6.4
.32
30 | 8.H
.72
68 | 1.5 | 0.1 | 0.0 | 63
1.03
97 | 0.0 | .03 | 0.3 | | 0.0 | •• | 61
48 | 52 | | 08/26/69
0930 | 5050
5050 | 67.0F
19.4C | | 321
325 | | | | | | | | | 14 | | | | | 158 | | 0730 | 7020 | .,,,, | | | | | | | | | | | 7 | | | | | | | | | 31N/12W-1 | 2L01 4 | | HAYFO | K VALL | .EY 1- | 6.00 | | | | | | | | | | | | 09/23/69 | 5050 | 63.0F
17.2C | 6.1 | 170 | | •• | | •• | | | | | •• | •- | | 61 00 | •• | - | | | | 31N/12#-1 | | | | | | | | | | | | | | | | | | 1130 | 5050 | 63.0F
17.2C | 6.3 | 215 | | | | •• | | | | | | | | | | | | | | 05N/01E-0 | AW04 H | | MAD RI | VER VA | LLEY | 1-8.00 | | | | | | | | | | | | 19/08/69 | | 63.0F | | | | | | | | | | | | | | | | | | 1600 | 5050 | 17.2C | 7.9 | 458 | | | | | | | | | | | | | | | | 19/08/69 | | 65.0F | 7.5 | 484 | 37 | 34 | 18 | 2.6 | 0.0 | 287 | 2.0 | 23 | 1.3 | | 0.1 | | 223 | 230 | | 1315 | 5050 | 18.3C | | 575 | 1.85 | 2.79 | .78 | .n7 | | 4.71 | 1 | 12 | .0> | | | | 759 | 0 | | 9/09/69 | 5050 | 57.0F
13.8C | | 435 | | •• | | | | | •• | •• | | | | •• | | | | 1243 | 3030 | 06N/01E-3 | | 435 | | | | | | | | | | | | | | | | 9/08/69
1315 | 5050
5050 | 74.0F
23.3C | 7.7 | 711
725 | •• | | 120 | | | | •• | | | | •• | | | 82 | | | | 06N/C1W-0 | 1H01 H | | | | 73 | | | | | | | | | | | | | 9/08/69 | 5050 | 67.0F
19.4C | 6.4 | 185 | | •• | | ** | •• | | | | | | | | | •• | | | | | | | EUREKA | PLAIN | 1-9- | 00 | | | | | | | | | | | | 0.400.440 | | 04W/C1W-08 | | | | | | | | | | | | | | | | | | 9/09/69 0840 | 5050 | 55.0F
12.7C | | 160 | | | •- | | | | | | | | | •• | •• | | | 9/09/69 | 5050 | 58.0F | | 482 | | | 27 | | | | | | | | | | | 184 | | 0825 | 5050 | 14.4C | 7.5 | 495 | | | 1.17 | | | | | | | | | | | 184 | | 3/09/69 | 5050 | 55.0F | | 168 | | | 10 | | | | | | | | | | | 55
55 | | 0900 | 5050 | 12.7C | | 165 | | | 26 | | | | | | | | | | | 22 | | 1/08/69 | 5050 | 67.0F
19.4C | 7.3 | 840 | | •• | •• | | | | | | | | | •• | | | | | | 05N/C1W-29 | | | | | | | | | | | | | | | | | |)/08/69
1415 | 5050
5050 | 63.0F
17.2C | 6.5 | 305
315 | | | .91
.91 | | | | | | 4n
.64
2n | | ₉₉ en | •• | | 86 | | | | | | | EE1 27 | VED VA | LLEY 1 | -10.0 | 0 | | | | | | | | | | | | | 02N/31W-04 | D01 H | | CEC ~1 | - TA | wwr. 1 | | ., | | | | | | | | | | | 1730 | 5050 | 58.0F
14.4C | 7.0 | 575 | | | | | | | | | | | | •• | | •• | | 400.440 | | 05N/01#-01 | | | | | | | | | | | | | | | 2.10 | 244 | | /09/69
1555 | 5050 | 57.0F
13.8C | | 518 | 73
3.64
93 | 2n
1.64
29 | 10 | 3.1 | 0.0 | 282
4.62
78 | 36
•75
13 | 7.4
.21
4 | .32
5 | | 0.1 | | 308 | 35 | | /60//0 | | 02N/61W-12 | 2D94 H | | | | | | | | | | | | | | | | | /09/69
1310 | 5050 | | 7.5 | 165 | •• | • • | | | | | | •• | | | | | | | | 100110 | | 03N/11W-05 | KC1 H | | | | | | | | | | | | | | | | | /09/69
1015 | 5050 | 59.0F
14.9C | 6.3 | 148 | | | | | | 49 10 | | | •• | | | | •- | | ### TABLE E-1 (CONTINUED) | UATE
TIME 5 | LAU
SAMPLE: | TEMP | PH
LAS | EC
LAS
FLO | | RAL CO | STITUE | | MILL | | ACTANO | PER L | Ε | | ILLIGR | | R LITE
TUS
SUM | R
TH
NCH | |------------------|----------------|---------------------|------------|------------------|------------------|------------------|-------------------|------------|------|-------------------|-----------------|---------------------|------------|-----|--------|----|----------------------|----------------| 03N/01W-1 | 8A01 H | | EEL RI | IVER V | ALLEY | 1-10.0 | 0 | | | | CONTIN | UED | | | | | | 09/09/69
1020 | 5:50
5:50 | 63.0F
17.2C | 7.0 | 416
420 | 25
1.25
27 | 30
2.47
53 | 20
•87
19 | 2.1 | 0.0 | 227
3.72
81 | 20
•42
9 | .39
.8 | 5.1
.0R | | 0.0 | •- | 214 | 184 | | 09/09/69
1300 | 5050
5050 | 5º.0F | 7.3 | 540
580 | 54
3,19
53 | 28
2.3n
38 | 11
•48
8 | 1.9 | 0.0 | 288
4.72
78 | 32
.67 | 14
• 39
6 | 16
•26 | •• | 0.1 | | 282 | 274
38 | | | | 03N/^2W-1 | | = . 2 . | 27/ | 200 | 2-0 | | | 102 | 1.00 | **** | 2.0 | | | | 2000 | 2020 | | 1045 | 5050 | 58.0F
14.4C | 7.0
6.3 | | 13.67 | | | 9.6 | 0.0 | 183
3.00
5 | | 1820
51.32
90 | .05 | | 0.1 | •• | 3900 | 1885 | | | | 034/02#-3 | 2001 H | | 24 | 47 | 28 | | | , | 3 | 90 | | | | | | | | 1450 | 5050
5050 | | 7.1 | 901
920 | 25
1.25
16 | 27
2.22
28 | 100
4.35
55 | 3.0
.08 | 0.0 | 3.0
.05 | 0.0 | 271
7.64
99 | 0.0 | •• | 0.0 | | 538
427 | 172 | | 09/09/69 | 5150 | 03N/^2#=3
58.0F | 7.5 | 849 | 29 | 37 | 97 | 11 | 0.0 | 307 | 35 | 106 | 6.n | | 0.1 | | 456 | 224 | | 1330 | 5,50 | 14.40 | 7.1 | 890 | 1.45 | 3.04 | 4.22 | .28 | | 5.03
57 | •73 | 2.99 | .10 | | *** | | 472 | 0 | | | | 22N/12#-0 | 61 N2 M | | ROUND | VALLEY | 1-11 | .00 | | | | | | | | | | | | 09/10/69 | 5050 | 63.0F | 7.2 | 460 | | | | •• | | | | | •• | | | | | | | | | 22N/12#-1 | 9F01 M | | | | | | | | | | | | | | | | | 09/10/69
1700 | 5050 | 63.0F
17.2C | 7.1 | 545 | | | | •• | | | | •• | | •• | | | | | | | | SSN/13M-0 | 1J03 M | | | | | | | | | | | | | | | | | 09/10/69
1400 | 5050
5050 | 72.0F
22.2C | 7.3 | 221
225 | •• | | 8.3
.36
16 | | •• | | •• | •• | •• | | | | •• | 92 | | 09/10/69 | 5959 | 22N/13W-17
6r.0F | 7.3 | 283 | 20 | 17 | 15 | 0.8 | 0.0 | 147 | 20 | 6.0 | 0.9 | | 0.1 | | 154 | 121 | | 1645 | 5050 | | 7.0 | 320 | 1.00 | 1.40 | ·65
21 | .02 | 0.0 | 2.41 | •42 | •17 | .01 | | 0.1 | | 152 | 1 | | 09/10/69 | 5.50
5.50 | 79.0F | 8.0 | 180 | 13 | 8.1
.67 | 12 | 0.9 | 0.0 | 98 | 2.1 | 7.4 | 0.0 | •• | 0.1 | | 56
92 | 67 | | 1500 | 232(. | 23N/12W-3 | | 1,0 | 35 | 36 | 28 | 1 | | 87 | S | 11 | | | | | | | | 09/10/69
1415 | 5(50 | 70.0F | 7.3 | 645 | | | | | •• | | | ** | •• | | | •• | | •• | | | | 23N/13w-2 | 5P01 M | | | | | | | | | | | | | | | | | 09/10/69
1330 | 5750 | | 7.3 | 260 | | | | | •• | | •• | | | | | | | | | 09/10/69 | | 23N/13W-30 | | | | | | | | | | | | | | | | | | 1350 | 5050 | 19.90 | 6.8 | 260 | | | | | | | | | | | | | | | | | | 21N/14W-3 | 1 СМ | | LAYTON | IVILLE | VALLEY | 1-12 | .00 | | | | | | | | | | | 09/10/69
1030 | 5050 | 67.0F
16.6C | 7.0 | 215 | | | | •• | | | | | | •• | | | | •• | | | | 21N/15W-01 | L02 4 | | | | | | | | | | | | | | | | | 09/10/69
1040 | 5350 | | 7.3 | 430 | | | •• | | | | | •• | | •• | | | | | | 00.410.440 | | 21N/15w-12 | | | | | | | | | | | | | | | | | | 1100 | 5050 | 60.0F
15.5C | 5.7 | 78 | | | | | | | •• | | •• | | | | | | | | | 180/13#-08 | BL01 M | | LITTLE | LAKE | VALLEY | 1-13 | . 00 | | | | | | | | | | | 09/11/69
0745 | 5450
5350 | 18.3C | | 519
532 | 12
•50
24 | 14
1+15
46 | 16
•70
28 | 1.4 | 0.0 | 116
1.90
80 | 8.6
•18
8 | 7.4
.21 | 5.1
.0A | | 0.5 | •• | 122 | 90 | | 09/11/69 | | 18N/13W-20 | | | | | | | | | | | 2.5 | | | | | •• | | 0830 | 5,,39 | 14.90 | 6.3 | 195 | | | | | | | | | | | | | | | # TABLE E-2 # TRACE ELEMENT ANALYSES OF GROUND WATER | | | | | Cor | stituents | in parts p | per million | | | |--|------------------------------------|----------------|---------|-----------------------|---------------|------------|-------------|---------------|------| | State Well Number | Date | As | Cd | Cu | Fe
(Total) | Рь | Mn | Se | Zn | | | K | HTAMAIH | RIVER | BASIN (| 1-2.00 |) | | | | | 46N-2E-15F1 | 8-8-69 | 0.00 | | | | | | | | | | | BUTT | E VALL | EY (1-3 | 3.00) | | | | | | 48n-1E-31D3
48n-1W-36J1 | 8-7 - 69
8-6 - 69 | 0.00 | | | | | | | | | | | SHAS | TA VAL | LEY (1- | 4.00) | | | | | | 43N-6W-21R1
45N-5W-6Q1
45N-6W-12G1 | 8-25-69
5-19-69
5-20-69 | 0.00 | | | 0.04 | | | | | | | • | SCOTT F | RIVER V | ALLEY (| 1-5.00 |) | | | | | 43N-9W-2G1
44N-9W-34R1 | 8-26-69
8-26-69 | 0.00 | 0.00 | 0.00 | 0.09 | 0.02 | 0.00 | 0.00 | 0.48 | | | | MAD RI | CVER VA | LLEY (1 | -8.00) | | | | | | 6N-1E-17D1 | 9-9-69 | 0.00 | 0.00 | 0.00 | 9.0 | 0.00 | 0.00 | 0.00 | 0.03 | | | | EUR | CKA PLA | IN (1-9 | 0.00) | | | | | | 5N-1E-18Q1 | 9-8-69 | 0.01 | 0.00 | 0.00 | 0.49 | 0.01 | 0.00 | 0.00 | 0.05 | | | | EEL RI | VER VA | LLEY (1 | -10.00 |) | | | | | 3N-1W-18A1
3N-2W-32Q1 | 9-9-69
9-9-69 | 0.00 | 0.02 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.01 | | | | ROUN | ND VALL | EY (1-1 | 1.00) | | | | | | 22N-13W-12Kl | 9-10-69 | 0.01 | | | | | | | | | | L | AYTONVI | LLE VA | LLEY (1 | -12.00 |) | | | | | 21N-14W-30M1 | 9-10-69 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.11 | | , | L | ITILE I | AKE VA | LLEY (1 | -13.00 |) | | | | | 18N-3W-20H3 | 9-11-69 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.03 | | | | | CONSTI | TUENTS | | | | | | | As Arsenic Cd Cadmium Cu Copper | | Fe
Ph
Mn | L | ron
ead
anganes | е | | Se
Zn | Sele:
Zinc | nium | # THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW PH 15 169 Se 8 30 BOOKS REQUESTED BY ANOTHER BORROWER ARE SUBJECT TO RECALL AFTER ONE WEEK. RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL 30P 4 '977 JUN 3 0 1988 APR 29 REC'D JUN 17 1911 RECEIVED JUN 13 TEUT MAK 7 PHYS SOI LIBHARY 5 1979 JUN 1 6 1989 FEB JAN 29 REC'D JUN 09 1989 REC'D JUL 4 1985 HEBENNED RECEIVED CHIC CO WITH NUV LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS Book Slip-Series 458 3 1175 00478 4636 TC 824 California. Dept. of Water Resources. Bulletin. C2 A2 NO. 130: 69 V. 1-3 PHYSICAL SCIENCES LIBRARY